One of the urgent tasks of increasing the efficiency and reliability of renewable energy sources such as solar cells is to seek and develop technologies for protecting their components from electrical and thermal overloads in order to increase service life and prevent unusual (in particular fire) situations.

In this paper, the understanding of the causes of these «hot spots» and modern methods and means of their prevention are analyzed.

In the article, the mechanism of formation of «hot spots», connected with the internal structure of solar panels is considered. «Hot spots» with or without thermal breakdown can lead to degradation and destruction of FE elements.

The analysis of methods for preventing the appearance of «hot spots» has been carried out. Today, the main areas of development of methods and means of preventing the appearance of «hot spots» are the following:

  • improvement of well-known circuit-based technologies based on by-pass diodes, which include active bypass switches;
  • use of photocells that have characteristics of a return test with low voltage amplitude or protection from open loop;
  • detection and active protection based on technologies for tracking the point of maximum power of solar cells.

A thorough analysis of the main research results in these areas, which has been achieved recently, has been carried out.

The prospect of application of elements of functional electronics, in particular, polymeric self-repairing safety fuses of the «Polyswith» type, is solved for the purpose of increasing the reliability of the devices for a transformation of solar radiation energy. Recent experimental studies have made it possible to establish that such security elements do not affect the operation of solar cells in their operating temperature range and are functionally suitable for the electrical isolation of local areas and components of high-temperature solar cells.


1. Köntges M. Review of failures of photovoltaic modules. IEA PVPS Task 13 / M. Köntges, S. Kurtz, C. Packard, U. Jahn, K.A. Berger, K. Kato, T. Friesen, H. Liu, M. Van Iseghem. – 2014. – 132 p.
2. Tonkoshkur A.S. Schemotechnical technologies for reliability of solar arrays / A.S. Tonkoshkur, L.V. Nakashidze., S.F. Lyagushyn // System technology. Regional interuniversity collection of scientific works. – Vol. 4 (117). – Dnipro, 2018. – P. 95–107.
3. Ramabadran R. Effect of shading on series and parallel connected solar PV modules / R. Ramabadran, B. Mathur // Modern Applied Science. – 2009. – Vol. 3, No 10. – Р. 32–41.
4. Daliento S. A modified bypass circuit for improved hot spot reliability of solar panels subject to partial shading. / S. Daliento, F. Di Napoli, P. Guerriero, V.d’Alessandro // Solar Energy. – 2016. – Vol. 134 (September). – P. 211–218.
5. Silvestre S. Study of bypass diodes configuration on PV modules / S. Silvestre, A. Boronat, A. Chouder // Appl. Energy. – 2009. – Vol. 86, Iss. 9. – P. 1632–1640.
6. Kim K.A. Reexamination of photovoltaic hot spotting to show inadequacy of the bypass diode / K.A. Kim, P.T. Krein // IEEE J. Photovoltaics. – 2015. – Vol. 5, Iss. 5. – P. 1435–1441.
7. Kim K.A. Photovoltaic hot spot analysis for cells with various reverse-bias characteristics through electrical and thermal simulation / K.A. Kim, P.T. Krein // Proc. IEEE Workshop Control Modeling Power Electron. – 2013. – P. 1–8.
8. Acciari G. Higher PV module efficiency by a novel CBS bypass / G. Acciari, D. Graci, A.L. Scala // IEEE Trans. Power Electron. – 2011. – Vol. 26, No. 5. – P. 1333–1336.
9. d’Alessandro V. A simple bipolar transistor-based bypass approach for photovoltaic modules / V. d’Alessandro, P. Guerriero, and S. Daliento // IEEE J. Photovoltaics. – 2014. – Vol. 4, No. 1. – P. 405–413.
10. Solórzano J. Hot-spot mitigation in PV arrays with distributed MPPT (DMPPT) / J. Solórzano, M.A. Egido // Solar Energy. – 2014. – Vol. 101 (March). – P. 131–137.
11. Kim K.A. Photovoltaic ac parameter characterization for dynamic partial shading and hot spot detection / K.A. Kim, P.T. Krein, G.-S. Seo, B.-H. Cho // Proc. IEEE Appl. Power Electron. Conf. – 2013. – P. 109–115.
12. Sánchez-Pacheco F.J. Photovoltaic systems distributed monitoring for performance optimization. / F.J. Sánchez-Pacheco. – Doct. Thesis. Universidad de Málaga (RIUMA: Málaga, España. – 2015.
13. Di Napoli F. Single panel voltage zeroing system for safe access on PV plants / F. Di Napoli, G. Guerriero, V. d’Alessandro, S. Daliento // IEEE J. Photovoltaics. – 2015. – Vol. 5, No. 5. – P. 1428–1434.
14. Schmidt H. Bypass and protection circuit for a solar module and method of controlling a solar module / H. Schmidt, W. Roth // U.S. Patent US20 120 194 003 A1, Aug. 2, 2012.
15. Resadi M. Control and signalling device for photovoltaic modules / M. Resadi, S. Costa, M. Cesana // Eur. Patent Appl. EP2 159 766 A1, 2010.
16. Sanchez-Pacheco F.J. PLC-Based PV plants smart monitoring system: field measurements and uncertainty estimation / F.J. Sanchez-Pacheco, P.J. Sotorrio-Ruiz, J.R. Heredia-Larrubia, F. Perez-Hidalgo, M. Sidrach De Cardona // IEEE Trans. Instrum. Meas. – 2014. – Vol. 63, No. 9. – P. 2215–2222.
17. Di Napoli F. A power line communication on DC bus with photovoltaic strings/ F. Di Napoli, P. Guerriero, V. d’Alessandro, S. Daliento // Proc. Renewable Power Gener. Conf. – 2014. – P. 1–6.
18. Tonkoshkur A.S. Application of self-repairing elements for electric protection of solar batteries / А.С. Tonkoshkur, A.V. Ivanchenko, L.V. Nakashidze, S.V. Mazurik // Technology and Constriction of Electronic Equipment. – 2018. – No.1. – P. 43–49.
19. Gavrikov V. Self-healing PTC-fuses for protection against current overloads / V. Gavrikov / Electronics news. – 2014. – No.12. – P. 11–15.
20. Oglesbee J.W. Overcharge protection device and methods for lithium based rechargeable batteries / J.W. Oglesbee, A.G. Burns // US Patent 6,608,470 B1 – 2003.

Abstract views: 96
PDF Downloads: 51
How to Cite
Nakashidze, L., & Tonkoshkur, O. (2018). PROBLEMS OF RELIABILITY OF PHOTOELECTRIC COMPONENTS OF SOLAR BATTERIES. Renewable and Hydrogen Energy , (3 (54), 21-30. Retrieved from