POWER LOSS FACTOR OF PV MODULES DUE TO MUTUAL SHADING AND OPTIMIZATION OF TILT ANGLES AND DISTANCE BETWEEN ROWS OF MODULES


  • D. Diomin 1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 03056, 37 Peremohy Av., Kyiv, Ukraine. 2Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine. http://orcid.org/0000-0002-3350-6628
  • A. Gaevskaya NTUU «Ihor Sikorsky Kyiv Polytechnic Institute» 03056, 37, av. Peremogy, Kiev, Ukraine http://orcid.org/0000-0001-7760-6789
  • O. Gaevskii NTUU "Igor Sykorsky Kyiv Polytechnic Institute", Peremogy pr. 37, Kyiv 03056, Ukraine, tel/fax: +380 44 204 8191, Renewable Energy Institute, NAS of Ukraine, Gnat Khotkevich str. 20-а, Kyiv 02094, Ukraine, tel/fax: : +380 44 206 2809 http://orcid.org/0000-0001-6144-2441
Keywords: PV plants, mutual shading of module rows, optimization of tilt angle, optimization of distance between module rows, PV power output.

Abstract

A significant factor affecting on the average daily electricity output by photovoltaic (PV) plants  is the mutual shading by adjacent rows of PV modules. To reduce the mutual shading influence on the PV plant output one have to solve the problem of optimization of the inter-row distances and the height of the PV module arrays, i.e. the modules tilt angles. Despite the geometric nature of this problem, its solution is not trivial, since it's necessary to account the changing of the sun’s height, the variations of the total irradiance on tilted surface and of the ratio of the direct and diffuse irradiance components during the daylight hours and during the entire calendar operation period of PV plant. In this paper, in order to describe the degree of influence of partial shading on the output power of PV rows the power attenuation factor due to shading has been introduced.  This factor is determined on the basis of experimental current-voltage characteristics (CVC), which were measured by the device developed in this work for testing of PV modules in field conditions with bottom shading in cases of horizontal and vertical arrangement of modules. The obtained dependences of the PV power attenuation factor on the shading degree are used to calculate the average daily PV energy output maps in the coordinates “row placement density – tilt angle”. As initial data, in addition to the power attenuation factor, are the hourly direct and diffuse insolation on a horizontal surface for each month of the PV plant operation. The developed method makes it possible to find the optimal configurations of the PV rows for two types of optimization problems: (1) ensuring maximum output at a given PV plant power and (2) obtaining maximum PV system output per unit area of the site. The method is applicable for any seasonal period of PV operation and for any region for which the above-mentioned insolation data are available. Ref. 22, fig. 9.

References

1. Chang T.P. Study on the optimal tilt angle of solar col-lector according to different radiation types. Int. Journ. of Applied Science and Engineering. 2008. V.6. Pp. 151-161. [in English].

2. Mehleri E.D., Zervas P.L. et al. Determination of the optimal tilt angle and orientation for solar photovoltaic arrays. Renew. Energy. 2010. V. 35. Pp. 2468- 2475. [in English].

3. Gaevskiy A.Yu., Gaevskaya A.N. Metod opredeleniya optimalnogo ugla naklona i orientatsii fotoelektricheskih moduley na osnove eksperimentalnyih dannyih solnechnoy radiatsii. [Method for determina-tion of the optimal PV modules tilt and azimuth angles on the base of solar irradiation data]. Alternativnaya energetika i ekologiya. 2018. No. 13-15. Pp.15-29. [in Russian].

4. Rauschenbach H.S. Electrical output of shadowed solar arrays. IEEE Trans. Electron Dev. 1971. V. 1. No. 8. URL: http://dx.doi.org/ . [in English].

5. Deline C. A simplified model of uniform shading in large photovoltaic arrays. Solar Energy. 2013. V. 96. Pp. 274-282.

6. Gayevskii O.Yu., Vreshch M.O., Melnyk O.V. Analiz efektu zatinennia fotoelektrychnykh moduliv u poslidovno-paralelnomu ziednanni. [Analysis of the PV modules shading effect in series-parallel connections]. Vidnovluvana energetika. 2013. No. 1. Pp. 28-30. [in Ukrainian].

7. Abdullah Al Mamun M. Experimental investigation of the effect of partial shading on photovoltaic performance. IET Renew-able Power Generation. 2017. V. 11. No. 7. Pp. 912-921. [in English].

8. Gaevskiy A.Yu., Demin D.A. Vliyanie ugla naklona i plotnosti raspolozheniya fotomoduley na effektivnost FES. [Impact of the tilt angle and solar panels row spacing on PV plant yield]. Alternativnaya energetika i ekologiya. 2018. No. 25-27. Pp. 273-275. [in Russian].

9. Erge Th., Hoffmann V.U. The German 1000-roofs-PV-programme - a resume of the 5 years pioneer project for small grid-connected PV systems. Proceedings of the 2nd World Con-ference on PVSEC. Vienna. 1998. Pp. 2648-2651. [in English].

10. Kurokawa K. Realistic values of various parameters for PV system design. Renewable Energy. 1998. V.15. Pp. 157-164. [in English].

11. Woyte A., Nijs J., Belmans R. Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar Energy. 2003. V. 74. Pp. 217-233. [in English].

12. Bashahu M., Nkundabakura P. Review and tests of methods for the determination of the solar cell junction ideality factor. Solar Energy. 2007. V. 81. Pp. 856-863. [in English].

13. Humada A.M. Solar cell parameters extraction based on single and double-diode models. A review. Renewable and Sustainable Energy Reviews. 2016. V. 56. Pp. 494-509. [in Eng-lish].

14. Ma J., Man K. Approximate Single-Diode Photovoltaic Model for Efficient I-V Characteristics Estimation. The Scientific World Journal. Vol. 2013. 7 p. Article ID 230471. [in English].

15. Zhang C., Zhang J., Hao Y. et al. A simple and effi-cient solar cell parameter extraction method from a single current-voltage curve. Journal of Applied Physics. 2011. V. 110, 064504. 7 p. [in English].

16. Gaevskiy A.Yu. Opredelenie parametrov fotoelektricheskih moduley na osnove tochnogo resh-eniya uravneniya dlya VAH. [Determina-tion of PV module parameters based on exact solution of the CVC equation]. Vidnovluvana energetika. 2012. No. 4. Pp.32-39. [in Russian].

17. Kong K.C., Mamat M., Ibrahim M.Z. New Approach on Mathematical Modeling of Photovoltaic Solar Panel. Applied Mathematical Sciences. 2012. V. 6. Pp. 381-401. [in English].

18. Karatepe E., Boztepe M., Colak M. et al. Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells. Solar Energy. 2007. V. 81. Pp. 977-992. [in English].

19. Gaevskaya A.N. Algoritm approksimatsii volt-ampernoy harakteristiki fotomodulya v usloviyah zateneniya. [Approximation of volt-ampere characteristics of PV module obtained under shading conditions]. Vidnovluvana energetika. 2019. No. 3. Pp. 21-29. [in Russian].

20. Bashahu M., Nkundabakura P. Review and tests of methods for the determination of the solar cell junction ideality factors. Solar Energy. 2007. V. 81. № 7. Pp.856-863. [in Eng-lish].

21. Gaevskii A. Method for determining parameters of PV modules in field conditions. 2019 IEEE 6th International Conference on Energy Smart Systems. April 17-19. 2019. Кyiv. Ukraine. DOI: 10.1109/ESS.2019.8764239. [in English].

22. Spravochnik po klimatu SSSR. Ukrainskaya SSR. Chast I. Solnechnaya radiatsiya, radi-atsionnyiy balans i solnechnoe siyanie. [Reference book on USSR climate. Ukrainian SSR. Part I. Solar irradiation, radiation balance and sunshine]. Leningrad. Gidrometeorologicheskoe izd. 1966. 126 p. [in Rus-sian].

Author Biographies

D. Diomin, 1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 03056, 37 Peremohy Av., Kyiv, Ukraine. 2Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

diomin.pngAuthor information: Graduate student, Renewable Energy Institute of the NAS of Ukraine.
Education: NTUU Kyiv Polytechnic Institute.
Research area: renewable energy, designing and analytics of PV power plants.
Publications: 6.

A. Gaevskaya, NTUU «Ihor Sikorsky Kyiv Polytechnic Institute» 03056, 37, av. Peremogy, Kiev, Ukraine

gaevskaia.pngAutor information: Senior Lecturer of the Department of RES.
 Education: National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Faculty of Electricity, specialty "Electrical Insulation and Cable Engineering".
Research area: renewable energy, computer simulation.
Publications: 25.

O. Gaevskii, NTUU "Igor Sykorsky Kyiv Polytechnic Institute", Peremogy pr. 37, Kyiv 03056, Ukraine, tel/fax: +380 44 204 8191, Renewable Energy Institute, NAS of Ukraine, Gnat Khotkevich str. 20-а, Kyiv 02094, Ukraine, tel/fax: : +380 44 206 2809

Gaevskii.pngAutor information: Doctor of Phys. Math. Sci., Professor of the RES Department.
Education: NTUU «Igor Sikorsky Kyiv Polytechnic Institute».
Research area: renewable energy, PV systems, computer simulation.
Publications: 125


Abstract views: 36
PDF Downloads: 32
Published
2019-12-26
How to Cite
Diomin, D., Gaevskaya, A., & Gaevskii, O. (2019). POWER LOSS FACTOR OF PV MODULES DUE TO MUTUAL SHADING AND OPTIMIZATION OF TILT ANGLES AND DISTANCE BETWEEN ROWS OF MODULES. Vidnovluvana Energetika, (4(59), 37-48. https://doi.org/https://doi.org/10.36296/1819-8058.2019.4(59).37-48