MODELING THE OPERATION OF A HYDRO–ACCUMULATING POWER PLANT IN THE PUMP MODE AT POWER SUPPLY FROM THE WIND POWER PLANT


  • А. Verbovij Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine. https://orcid.org/0000-0003-2838-6032
Keywords: pumped hydroelectrical station, centrifugal pump, speed, frequency, voltage, current.

Abstract

As the installed capacity of renewable energy sources on the basis of solar and wind power plants increases, the need for backup power sources increases. The serious disadvantages of renewable energy sources, which limit their widespread use, include the low density of energy flows and their variability over time. In particular, this factor influences the production of electricity by wind and photo power plants: the schedule of energy production is probabilistic. The source of the shunting power may be a pumped hydro electrical station. Hydropower plants for a long time have proven themselves to be relatively simple and reliable with maximum maneuverability - fast dialing and load relief, a large range of regulation. A simulation model of a pumped hydroelectrical station for powering an induction motor of a centrifugal pump from a wind turbine with an induction generator is developed. The known model is a wind turbine with an asynchronous generator in the composition of a wind-driven diesel system in an isolated electrical network, which was supplemented by an induction motor, switches, a centrifugal pump, connecting pipelines, tanks, sensors and devices for displaying the necessary characteristics. The model is implemented in the modern mathematical package MATLAB. The advantages and disadvantages of an induction generator are determined on the basis. With the help of the created model, theoretical studies of the work of a wind turbine with an induction generator were carried out using a stochastic component of wind speed. The influence of the stochastic component of wind speed on the output parameters of an induction generator, such as speed, frequency, voltage, current, are analyzed. Studies of an induction motor with load from a centrifugal pump in dynamic and quasi-static modes were also carried out. Ref. 25, fig. 6.

References

REFERENCE

1. Holodov D.V., Obuhov E.V., Stepanov V.N., Polnarev S.Y. Netradicionnye strategii v osvoenii prirodnyh energoresursov primorskih regionov Ukrainy. [Unconventional strategies in the development of natural energy resources of the coastal regions of Ukraine]. O. Astroprint. 2003. 162 p. [in Russian].

2. Krivcov V.S., Alejnikov A.M., Yakovlev A.I. Neischerpaemaya energiya. Kn.1. Vetroelektrogeneratory. [Inexhaustible energy. Book 1. Wind power generators]. Uchebnik. Harkov. Nac. aerokosm. un–t «Hark.aviac. in–t». Sevastopol. Sevast.nac.tehn.un–t. 2003. 400 p. [in Russian].

3. Barnhart J.Ch., Dale M., Brandtb A.R., Bensona S.M. The energetic implications of curtailing versus storing solar- and wind-generated electricity. Energy Environ. Sci. 2013. No. 6. Pp. 2804-2810. [in English].

4. Haritonov V.P. Avtonomnye vetroelektricheskie ustanov-ki. [Autonomous wind power installations]. M. 2006. 280 p. [in Russian].

5. Vasko P., Verbovij A., Moroz A., Pazych S., Ibragimova M., Sahno L.Concept of Accumulation of Energy from Photovol-taic and Wind Power Plants by Means of Seawater Pumped Hy-droelectric Energy Storage. 2019 IEEE 6th International Confer-ence on Energy Smart Systems (ESS). Kyiv. Ukraine. 2019. Pp. 188-191. doi: 10.1109/ESS.2019.8764167. [in English].

6. Serebryanikov N.I., Rodionov V.G., Kuleshov A.P., Ma-gruk V.I., Ivanushenko V.S. Gidroakkumuliruyushie elektrostancii. Stroitelstvo i ekspluataciya Zagorskoj GAES. [Pumped hydro electric stations. Construction and operation of the Zagorsk PHES]. M. Izdatelstvo NC ENAS. 2000. 368 p. ISBN 5-93196-024-4. [in Russian].

7. Sinyugin V.Yu., Magruk V.I., Rodionov V.G. Gidroakku-muliruyushie elektrostancii v sovremennoj elektroenergetike. [Pumped hydro electric stations in modern electric power indus-try]. M.Izdatelstvo NC ENAS. 2008. 352 p. ISBN 978-593196-917-6. [in Russian].

8. Schnitzer V. Pumpenantriebe mit regenerativer Energie; ih-re besondere Anforderungen an Pumpen. Pumpentagung Karls-ruhe’92. Fachgemeinschaft Pumpen im VDMA. Frankfurt Main. Oktober 1992. Beitrag A5–11. [in German].

9. Pumps as turbines for hydraulic energy recovery and small hydropower purposes in Poland. [Electronic resource].URL: https://www.researchgate.net/publication/ 269992946. (Applying date: 12.09.2019). [in English].

10. Baumgarten S., Guder W. Pumpen als Turbinen.. KSB Pump company. Technik kompakt. July 2005. No. 11. Pp. 2-9. [in English].

11. Williams A.A. The turbine performance of centrifugal pumps: a comparison of predictionmethods. Proc. IMech. Part A. 1994. Vol. 208. Pp. 59-66. [in English].

12 Nourbakhsh A., Derakhshan S. Mini and Micro Hydropower Stations for Production Inexpensive Energy. HIDROENERGIA 2008-05-04. Intern. Conf. and Exhibition. SMALL HYDROPOWER. Bled–Slovenia. 11-13 June 2008. [in English].

13. Singh P. Ramasubramanian V., Rao A. Performance Evaluation of the Pump as Turbine based Micro Hydro Project in Kinko Village. Tanzania. P. Singh. Himalayan Small Hydropower Summit. Dehradun. India. October 12-13. 2006. Pp. 159-166. [in English].

14. Maher P. Smith N.A., Williams A.A. Assessment of pico hydro as an option for off–gridelectrification in Kenya. Renewable Energy. 2003. Vol. 28. Pp. 1357-1369. [in English].

15. Fateev E.M. Vetrodvigateli i vetroustanovki. [Wind turbines and wind instalations]. M. State publ. of agric. lit. 1957. 536 p. [in Russian].

16. Voldek A.I. Elektricheskie mashiny. [Electric machines]. 2 edition. L. Energy. 1974. 840 p. [in Russian].

17. Vasko P., Holovko V., Verbovij A. Vyshchi harmoniini skladovi napruhy i strumu asynkhronnoho heneratora s korot-kozamknenoiu obmotkoiu rotora u skladi malykh vitro- ta hidro-elektrychnykh ustanovok. [Analysis of power quality at the output of the asynchronous generator with short-circuited in different operating modes in the small wind and hydroelectric installations on the experimental data]. Vidnovluvana energetika. 2016. No. 4(47). Pp. 63-67. [in Ukraine].

18. Chernyih, I.V. SIMULINK – Sreda sozdaniya inzhenernyih prilozheniy. [Environment for creating engineering applications]. Moscow. Dialog MIFI. 2004. 496 p. [in Russian].

19. Dyakonov V.P. MATLAB 6/6.1/6.5 SIMULINK 4/5 v matematike i modelirovanii. [MATLAB 6/6.1/6.5 SIMULINK 4/5 in mathematics and modeling]. Moscow. Solon-Press. 2003. 768 p. [in Russian].

20. Gagnon R., Saulnier B., Sybille G., Giroux P. Modeling of a Generic High–Penetration No–Storage Wind–Diesel System Using Matlab/Power System Blockset. Global Windpower Con-ference. April 2002. Paris. France. [in English].

21. Verbovij A. Strukturna skhema imitatsiinoi modeli avtonomnoi hidroakumuliuvalnoi elektrostantsii. [Structural dia-gram of a simulation model of an autonomous pumped hydro electric station]. Proceedings of the 20th International Science – Practical Conference «Renewable Energy and Energy Efficiency in the 21st Century». 2019. Kyiv. Pp. 506-510. [in Ukraine].

22. Lezhnyuk P.D., Nikitorovich R.V., Ngoma Zh.–P. Kompensaciya reaktivnoj moshnosti asinhronnyh generatorov na malyh gidroelektrostanciyah. [Compensation of the reactive power of asynchronous generators at small hydroelectric power stations]. Power engineering and electrical engineering. Scientific works. VNTU. 2008. No. 2. Pp.1-7. [in Russian].

23. Vasko P., Verbovij A., Pazych S. Realizaciya stohastich-noyi modeli pozdovzhnoyi skladovoyi shvidkosti vitru dlya zadach vitroenergetiki. [Implementation of a stochastic model of the longitudinal component of wind speed for wind power prob-lems]. Vidnovluvana energetika. 2017. No. 3. Pp. 54-61. [in Ukraine].

24. Verbovij A., Pazych S. Modelyuvannya dinamichnih i kvazistatichnih rezhimiv roboti vitrovodonasosnoyi ustanovki z urahuvannyam stohastichnoyi skladovoyi shvidkosti vitru. [Mod-eling of dynamic and quasi-static modes of operation of a wind-pumping installation taking into account stochastic component of wind speed]. Vidnovluvana energetika. 2018. No. 4(55). Pp. 25-33. [in Ukraine].

25. Bryl A., Vasko V., Vasko P., Solovjov P. Matematich-eskoe modelirovanie puskovyh rezhimov sinhronnyh i asinhronnyh generatorov malyh GES. [Mathematical modeling of starting modes of synchronous and asynchronous generators of small hydropower plants]. Alternative energy and ecology (ISJAEE). 2014. No. 15. Pp.71-81. [in Russian].

Author Biography

А. Verbovij, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

verbovyj_ap.jpgAuthor information: senior research  of Hydropower Engineering Department, Institute of Renewable Energy NAS of Ukraine
Education: Natiωnal Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». Specialty: "Electric drive and automation of industrial instalations”.
Research area: conversion of renewable energy types, small hydropower.
Publications: 129.


Abstract views: 45
PDF Downloads: 35
Published
2019-12-27
How to Cite
VerbovijА. (2019). MODELING THE OPERATION OF A HYDRO–ACCUMULATING POWER PLANT IN THE PUMP MODE AT POWER SUPPLY FROM THE WIND POWER PLANT. Vidnovluvana Energetika, (4(59), 56-63. https://doi.org/https://doi.org/10.36296/1819-8058.2019.4(59).56-63