CREATION OF AUTONOMOUS AND NETWORK ENERGY-TECHNOLOGICAL COMPLEXES WITH A HYDROGEN STORAGE OF ENERGY

Keywords: alternative sources, energy technology complex, hydrogen, solar energy, hydrogen generator. А.А. Шевченко A. Shevchenko Сведения об авторе: главный инженер отдела водородной энергетики. Образование: Харьковский Национальный Аэрокосмический Университет им. Жуковского «ХАИ», факультет авиационных двигателей, специальность «Теплоэнергетика». Научная сфера: получение, хранение и использование водорода, возобновляемая энергетика. Публикаци: 16 статей в научных изданиях Украины, 2 содержится в наукометрических базах Scopus и Web of Science; 7 патентов Украины на изобретение и 5 патентов Украины на полезную модель. ORCID: 0000-0002-6009-2387 Контакты: 38 (057)349 47 82 e-mail: shevchenko84@ukr.net Author information: Principal engineer of the hydrogen energy department. Education: Kharkiv National Aerospace University Zhukovsky «KhAI», faculty of aviation engines, specialty «Heat engineering». Scientific field: production, storage and use of hydrogen, renewable energy. Publication: 16 articles in scientific journals of Ukraine, 2 contained in the scientometric database Scopus and Web of Science; 7 patents of Ukraine for an invention and 5 patents of Ukraine for a utility model. ORCID: 0000-0002-6009-2387 Contacts: 38 (057) 349 47 82 e-mail: shevchenko84@ukr.net

Abstract

The article analyzes the energy potential of alternative sources of Ukraine. Projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling vehicles located in areas with high solar radiation potential, are considered. During the operation of water desalination plants using a solar power station (SES) as an energy source, contingencies are very likely to arise due to either a power outage (due to cloudy weather) or an emergency failure of individual elements of the system. In this case, it is required to ensure its decommissioning without loss of technological capabilities (operability). For this purpose, it is necessary to provide for the inclusion in the technological scheme of the energy technological complex of an additional element that ensures the operation of the unit for a given time, determined by the regulations for its operation. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. N. Podgorny National Academy of Sciences of Ukraine (IPMash NAS of Ukraine) allows the production and accumulation of hydrogen under high pressure, which eliminates the use of compressor technology.

A schematic diagram of an autonomous solar-hydrogen energy-technological complex for refueling vehicles is given.

The features of connecting solar panels as part of the energy technology complex are described. Ref. 20, tab. 1, fig. 6.

Author Biography

A. Shevchenko, Institute of Mechanical Engineering A.M. Podgorny NAS of Ukraine, 61046, st. Pozharsky 2/10, Kharkov, Ukraine.

shevchenko.pngAuthor information: Principal engineer of the hydrogen energy department.
Education: Kharkiv National Aerospace University Zhukovsky «KhAI», faculty of aviation engines, specialty «Heat engineering».
Scientific field: production, storage and use of hydrogen, renewable energy.
Publication: 16 articles in scientific journals of Ukraine, 2 contained in the scientometric database Scopus and Web of Science; 7 patents of Ukraine for an invention and 5 patents of Ukraine for a utility model.

References

1. Sivolapov V., Guz A., Novitsky M., Marchenko V. Potentsial vidnovlyuvanykh dzherel enerhiyi v Ukrayini. [Potential of the latest generation of energy in Ukraine]. Agroexpert. 2016. Vol. 12. № 101. Рp. 74-77. [in Ukrainian].
2. Züttel A., Remhof A., Borgschulte A., Friedrichs, O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. Vol. 368. № 1923. Pp. 3329- 3342. [in English].
3. Sherif S.A., Barbir F., Veziroglu T.N. Wind energy and the hydrogen economy-review of the technology. Solar energy. 2005. Vol. 78. № 5. Pp. 647-660. [in English].
4. Schlapbach L. Technology: Hydrogen-fuelled vehicles. Nature. 2009. Vol. 460. № 7257. Pp. 809-811. [in English].
5. Troshenkin, V.B., Zippunikov N.N. Sostoyaniye razrabotok po issledovaniyu protsessa i konstruirovaniya oborudovaniya polucheniya vodoroda iz vody s ispol'zovaniyem splavov. [State of developments on the study of the process and design of equipment for the production of hydrogen from water using alloys]. Vestnik NTU "KhPI". 2008. Vol. 12. Рp. 51-55. [in Russian].
6. Matsevytyi Y., Chorna N., Shevchenko A. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics. Journal of Mechanical Engineering. 2019. Vol. 22. № 4. Рр. 48-52. doi: https://doi.org/10.15407/pmach2019.04.048 [in English].
7. Clarke R. E., Giddey S., Ciacchi F. T., Badwal S. P. S., Paul B., Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy. 2009. Vol. 34. № 6. Pp. 2531-2542. [in English].
8. Kunusch C., Puleston P. F., Mayosky M. A., Riera J. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Transactions on Control Systems Technology. 2009. Vol. 17. № 1. Pp. 167-174. [in English].
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012. Vol. 16. Pp. 3024-3033. [in English].

10. Sharma S., Ghoshal S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015. Vol. 43. Pp. 1151-1158. [in English].
11. Solovey V.V., Shevchenko A.A., Kotenko A.L., Makarov O.O. 3013. The Device for Generation High-pressure Hydrogen. Patent of Ukraine № 103681 МПК С25В 1/12, С25В 1/03. Made public on November 11. 2013. Bulletin No. 21. [in Ukrainian].
12. Shevchenko A.A. Ispolzovaniye ELAELov v avtonomnykh energoustanovkakh, kharakterizuyush-chikhsya neravnomernostyu energopostupleniya. [The use of ELAELs in autonomous power plants character-ized by uneven energy supply]. Aviats.-kosm.tekhnika i tekhnologiya. Aerospace Technic and Technology. Khar-kov. Kharkiv Aerospace University ''KhAI''.1999. Vol. 13. Рp. 111-116. [in Russian].
13. Solovey V.V., Zhirov A.S., Shevchenko A.A. Vliyaniye rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniya. Sovershenstvovaniye turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniya. [The influence of regime factors on the efficiency of a high-pressure cell. Improvement of turbine installations by methods of mathematical and physical modeling]. Sb. nauch. tr. 2003. Pp. 250-254. [in Russian].
14. Solovey V., Kozak L., Shevchenko A., Zipunnikov M., Campbell R., Seamon F. Hydrogen technology of energy storage making use of windpower potential. Problemy Mashinostroyeniya – Journal of Mechanical Engineering. 2017. Vol. 20. № 1. Рp. 62-68. doi: https://doi.org/10.17721/fujcV6I2P73-79. [in English].
15. Solovei V., Kotenko A., Vorobiova I., Shevchenko A., Zipunnikov M. Basic operation principles and control algorithm for a high-pressure membrane-less electrolyser. Journal of Mechanical Engineering. 2018. Vol. 21. № 4. Рр. 57-63. doi: https://doi.org/10.15407/pmach2018.04.057. [in English].
16. Solovey V., Khiem N. T., Zipunnikov M. M., Shevchenko A. Improvement of the Membrane-less Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6. № 2. Рp. 73-79. doi: https://doi.org/10.17721/fujcV6I2P73-79. [in English].
17. Solovey V., Zipunnikov N., Shevchenko A., Vorobjova I., Kotenko A. Energy Effective Membrane-less Technology for High Pressure Hydrogen Electro-chemical Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6. № 1. Рp. 151-156. doi: https://doi.org/10.17721/fujcV6I1P151-156. [in English].
18 Shevchenko A., Zipunnikov M., Kotenko А., Vorobiova,I., Semykin V. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. 2019. Vol. 22. № 4. Рр. 53-60. doi: https://doi.org/10.15407/pmach2019.04.053. [in English].
19. Phillips R., Dunnill C.W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas. RSC Adv. 2016. Vol. 6. Рp. 100643-100651. [in English].
20. Phillips R., Edwards A., Rome B., Jones D.R., Dunnill C.W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy 2017. Vol. 42. Рp. 23986-23994. [in English].

Abstract views: 45
PDF Downloads: 20
Published
2020-06-28
How to Cite
Shevchenko, A. (2020). CREATION OF AUTONOMOUS AND NETWORK ENERGY-TECHNOLOGICAL COMPLEXES WITH A HYDROGEN STORAGE OF ENERGY. Vidnovluvana Energetika, (2(61), 18-27. https://doi.org/10.36296/1819-8058.2020.2(61).18-27
Section
Complex Problems of Power Systems Based on Renewable Energy Sources