THE USE OF RESTTABLE FUSES “POLYSWITCH” TO PREVENT CURRENT OVER-LOADS IN PHOTOVOLTAIC SYSTEMS

Keywords: photoelectric converter, overcurrent, resettable fuses, current-voltage characteristics, power-voltage characteristics, simulation.

Abstract

Relevance. Currently available simulation results and experimental data indicate that bypass diodes in the subpanel rows of photovoltaic cells do not fully protect against the appearance of “hot spots”. Bypass diodes are more effective for preventing “hot spots” with very short PV-cell line lengths, which is not used in modern panel designs for economic reasons. Therefore, it is necessary to increase the reliability of solar cells, including the elimination of emergency (fire hazardous) situations based on the development of methods and means to prevent current overloads in their photovoltaic systems based on new approaches.

Purpose. Development of a universal approach to minimize current overloads in photovoltaic systems of solar cells by using low-cost elements of functional electronics, in particular, relatively new and widely used self-healing fuses of the Polyswith type.

Method. A circuit solution is proposed and the modeling method substantiates the possibility of using Polyswitch type fuses to prevent and minimize current overloads in solar PV systems.

Results. The influence of the resistance value in the conducting state and the fuse trip current on the current-voltage and power-voltage characteristics of parallel connections of photoelectric converters and their modules is analyzed.

A mathematical model of the circuit solution is developed and its basic characteristics are simulated using typical parameters of monocrystalline silicon photoelectric converters and commercial self-healing fuses. The influence of the resistance value in the conducting state and the trip current of the RFu on the current-voltage and power-voltage characteristics of the parallel connection of the photovoltaic components of solar cells is analyzed.

Conclusion. It is shown that effective current limiting in the presence of a short circuit with such a connection of photovoltaic components can be implemented when the following conditions are met:

- the resistance of the fuse in the conducting state is much less than the parallel connection of the series resistances of the photoelectric components;

- the trigger current of the fuse must be greater than the short circuit current of the individual photovoltaic component and less than the current of their parallel connection. Ref. 26, fig. 5, tabl. 1.

Author Biographies

A. Tonkoshkur, Oles Honchar Dnipro National University, 49005, 72 Gagarina Av., Dnipro, Ukraine.

Tonkoshkur.pngAuthor information: doctor of physics and mathematics, professor Department of Radio Electronics of Oles Gonchar Dnipro National University.
Education: Dnipropetrovsk National University in 1971 graduated from Dnipropetrovsk State University, specializing in radiophysics and electronics.
Research area: renewable and non-conventional energy sources.
Publications: author of more than 300 scientific and teaching works.

L. Nakashidze, Oles Honchar Dnipro National University, 49005, 72 Gagarina Av., Dnipro, Ukraine.

Nakashidze1.pngAuthor information: doctor of technical science, director of the Energy Research Institute Oles Hon-char Dnipropetrovsk National University.
Education: Dnepropetrovsk Institute of Chemical Technology, Faculty of Technology of inorganic compounds, specialty technology of inorganic compounds (1985).
Research area: the renewable and alternative ener-gy sources.
Publications: author of more than 120 scientific papers, including 3 patents.

References

1. Köntges M., Kurtz S., Packard C., Jahn U., Berger K.A., Kato K., Friesen T., Liu H., Van Iseghem M. Review of failures of photovoltaic modules. IEA PVPS Task 13. 2014. 132 p. [in English]
2. Solnechnye moduli i batarei. [Solar modules and batteries]. United Solar Technologies. [Electronic resource]. URL: http://ust.su/solar/media/section-inner17. (Applying date: 12.05.2019). [in Russian].
3. Tonkoshkur A.S., Nakashidze L.V., Lyagushyn S.F. Schemotechnical technologies for reliability of solar arrays. Systemni texnologiyi. Dnipr. 2018. Vyp. 4(117). Pp. 95-107. [in English].
4. Kim K.A., Krein Р.T. Photovoltaic hot spot analysis for cells with various reverse-bias characteristics through electrical and thermal simulation. Proc. IEEE Workshop Control Modeling Power Electron. Junе. 2013. Рp. 1-8. [in English].
5. Kim K.A., Krein Р.T. Reexamination of photovoltaic hot spotting to show inadequacy of the bypass diode. IEEE J. Photovoltaics. 2015. No. 5(5). Рp. 1435-1441. [in English].
6. Acciari G., Graci D., Scala A.L. Higher PV module efficiency by a novel CBS bypass. IEEE Trans. Power Electron. May. 2011. Vol. 26. No. 5. Pp. 1333-1336. [in English].
7. D’Alessandro V., Guerriero P., Daliento S. A simple bipolar transistor-based bypass approach for photovoltaic modules. IEEE J. Photovoltaics. Jan. 2014. Vol. 4. No. 1. Pp. 405-413. [in English].
8. Pacheco Sánchez F.J. Photovoltaic systems distributed monitoring for performance optimization. Doct. Thesis. Universidad de Málaga (RIUMA: riuma.uma.es). Málaga. España. 2015. [in English].
9. Di Napoli F., Guerriero G., D’Alessandro V., Daliento S. Single panel voltage zeroing system for safe access on PV plants. IEEE J. Photovoltaics. 2015. Vol. 5(5). Pp. 1428-1434. [in English].
10. Tonkoshkur A.S., Ivanchenko A.V., Nakashidze L.V., Mazurik S.V. Primenenie samovosstanavlivajushhihsja jelementov dlja jelektricheskoj zashhity solnechnyh batarej. [The use of self-healing elements for the electrical protection of solar cells]. Tehnologija i konstruirovanie v jelektronnoj apparature. 2018. No. 1. Pp. 43-49. [in Russian].
11. Gavrikov V. Samovosstanavlivajushhiesja PTC-predohraniteli dlja zashhity ot tokovyh peregruzok. [Self-repairing PTS fuses for protection against current overloads]. Novosti Jelektroniki. 2014. No. 12. Pp. 11-15. [in Russian].
12. Kaminskaja T.P., Domkin K.I. Samovosstanavlivajushhiesja predohraniteli dlja avtomobilnoj jelektroniki. [Self-repairing fuses for automotive electronics]. Jelektronnye komponenty. 2008. No. 5. Pp. 80-82. [in Russian].
13. Oglesbee J.W., Burns A.G. Pat. 6608470 USA. Overcharge protection device and methods for lithium based rechargeable batteries. 19.08.03. [in English].
14. Protecting rechargeable Li-ion and Li-polymer batteries: Littelfuse, Inc. 2017. [Electronic resource].
URL: http://www.littelfuse.com/~/media/electronics/application_notes/littelfuse_protecting_rechargeable_li_ion_and_li_polymerbatteries_in_consumer_portable_electronics_application_note.pdf.pdf. (Applying date: 10.05.2019). [in English].
15. Levshov A.V., Fjodorov A.Ju. O matematicheskom modelirovanii fotojelektricheskih module. [About mathematical modeling of photovoltaic modules]. Naukovi praci DonNTU. Serija Elektrotehnika i energetyka. 2013. No. 1(14). Pp. 153-158. [in Russian].
16. Raushenbah G. Spravochnik po proektirovaniju solnechnyh batarej. [Handbook of Solar Design]. M. Jenergoatomizdat. 1983. 360 p. [in Russian].
17. Lorenzo E. Solar Electricity Engineering of Photovoltaic Systems. Artes Graficas Gala. Spain. 1994. [in English].
18. Koval O.S., Tivano M.S. Opredelenie parametrov solnechnogo elementa iz ego svetovoj volt-ampernoj harakteristiki. [Determination of parameters of a solar cell from its light current-voltage characteristic]. Vestnik BGU. 2012. Ser. 1. No. 2. Pp. 39-44. [in Russian]
19. Salem F.A. Modeling and Simulation issues on Photo Voltaic systems, for Mechatronics design of solar electric applications. International Journal of Mechanical Engineering (IIJME). August 2014. Vol. 2. Issue 8. [Electronic resource]. URL: http://www.ipasj.org/IIJME/IIJME.htm (Applying date: 10.05.2019). [in English].
20. Alboteanu I.L., Ivanov S., Manolea G. Modelling and simulation of a stand-alone photovoltaic system. 8 th WSEAS International Conference on POWER SYSTEMS (PS 2008). Santander. Cantabria. Spain. September 23-25. 2008. Pp. 189-194. [in English].
21. Hansen A.D., Sоrensen P., Hansen L.H., Binder H. Models for a Stand-Alone PV System. Roskidle. 2000. 78 p. [in English].
22. Gaevskij A.Ju. Opredelenie parametrov fotojelektricheskih modulej na osnove tochnogo reshenija uravnenija dlja VAH. [Determination of parameters of photovoltaic modules based on the exact solution of the equation for VAN]. Vidnovluvana energetika. 2012. No. 4. Pp. 32-39. [in Russian].
23. Honsberg C., Bowden S. Arisone State University. Solar Power Labs. [Electronic resource]. URL: http://www.pveducation.org/pvcdrom (Applying date: 10.04.2019). [in English].
24. Mjeklin Je.D. Termorezistory. [Thermistors]. M. Radio i svjaz. 1983. 208 p. [in Russian].
25. Tonkoshkur O.S., Trystan O.N. , S’janov O.M. Komponentna baza REA. [Component base of REA]. Dniprodzerzhynsk DDTU. 2004. 240 p. [in Ukrainian].
26. PolySwitch. Resettable Device Short Form Catalog. Tuco Electronics. Raychem circuit protection. May. 2005. [Electronic resource]. URL: https://datasheet.octopart. com/MICROSMD010F-2-Tyco-Electronics-datasheet-45906.pdf (Applying date: 11.05.2019). [in English].

Abstract views: 23
PDF Downloads: 13
Published
2020-06-28
How to Cite
Tonkoshkur, A., & Nakashidze, L. (2020). THE USE OF RESTTABLE FUSES “POLYSWITCH” TO PREVENT CURRENT OVER-LOADS IN PHOTOVOLTAIC SYSTEMS. Vidnovluvana Energetika, (2(61), 34-44. https://doi.org/10.36296/1819-8058.2020.2(61).34-44