APPROXIMATE SUBSTITUTION ELECTRICAL ЕQUIVALENT CIRCUIT OF EXPLICIT POLE SYNCHRONOUS GENERATOR FOR ANALYSIS OF LOADING OPERATING MODES AUTONOMOUS WIND-ELECTRIC AND HYDROELECTRIC INSTALLATIONS

Keywords: synchronous explicit-pole generator, vector diagram, armature reaction, electrical equivalent circuit.

Abstract

Synchronous generators with an explicit pole are widely used in wind and low-power hydropower plants. Today, the problem of using powerful autonomous wind power plants with synchronous generators to accumulate part of the energy generated by them at pumped hydro storage power station is becoming relevant. The development of rational circuit and technical solutions for the implementation of this technology for multi-unit wind-electric station requires analysis of the load modes of operation of all components in a wide range of operating wind speeds and rotor rotation speeds. Effective modeling and computational studies of electromechanical processes in these systems can be realized by using substitution electrical circuit of generators and motors, but for an explicit pole synchronous generator it is impossible to build an accurate electrical equivalent circuit for the electromotive force of the armature winding. In the framework of this study, an approximate electrical equivalent circuit diagram of the phase explicit pole synchronous generator was developed and an estimate of possible errors in the calculation of the parameters of the load mode of the circuit at different values of the rotor speed has been performed. The scheme is based on the sequential switching on of the active resistance of the armature winding and inductive resistances of scattering and lumbar reaction of the armature, as well as inductive resistance due to the combined action of the lumbar and longitudinal reactions of the armature. The expected errors in determining the calculated voltage parameters of consumers of autonomous power supply systems based on wind and hydroelectric installations with synchronous explicit pole generators using the developed electrical equivalent circuit do not exceed 2.5% modulus and 1.5 electric degrees per phase for arbitrary generator rotor speed. in the range of 0.6 ... 1.2 nominal value. The application of the developed electrical equivalent circuit of the explicit pole synchronous generator provides opportunities for automated multivariate calculation studies of electromechanical transients in power supply systems based on wind-electric and hydroelectric installations taking into account wind speed pulsations, changes in water flow discharge and water head, load changes.

Ref. 24, tab. 3, fig. 3.

Author Biography

P. Vasko, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

vasko.pngAuthor information:  Doctor of Technical  Sciences majoring in «Renewable Energy  Transformation», Head of Hydropower Department of the Institute of Renewable Energy NAS of Ukraine.
Education: National Technical University of Ukraine «Kyiv Polytechnic Institute».
Research area: alternative energy, energy saving, conversion of renewable energy types and installations based on them, small hydropower
Publications: 252.

References

1. Haritonov V.P. Avtonomnyie vetroelektricheskie ustanovki. [Autonomous wind power plants]. Moscow. 2006. 280 p. [in Russian].
2. Dzenzerskiy V.A., Tarasov S.V., Kostyukov I.U. Vetroustanovki maloy moschnosti. [Low power wind turbines]. Kyiv. Naukova dumka. 2011. 591 p. [in Russian].
3. Elistratov V.V. Gidroelektrostantsii maloy moschnosti. [Low power hydroelectric power stations]. Textbook allowance. Publisher. Politechnic university. 2005. 432 p. [in Russian].
4. But D.A. Beskontaktnyie elektricheskie mashinyi. [Contactless electric machines]. Moscow. High school. 1990. 432 p. [in Russian].
5. Bruskin D.E. Elektricheskie mashinyi i mikromashinyi. [Electric machine and micromachines]. Moscow. High school. 1990. 528 p. [in Russian].
6. Kravchik A.E., Shlaf M.M., Afonin V.I. Asinhronnyie dvigateli serii 4A. [Series Induction Motors 4A]. Reference. Moscow. Energoizdat. 1982. 504 p. [in Russian].
7. Kopyilov I.P., Klokova K.K. Spravochnik po elektricheskim mashinam v 2 t. [Electric Machine Reference in 2 vol.]. Vol. 1. Moscow. Energoatomizdat. 1988. 456 p. [in Russian].
8. Merino J., Veganzones C., Jose A.S.., Martinez S., Platero C A. Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands. Energies. 2012. № 7. Pp. 2351-2369.
https://doi.org/10.3390/en5072351. [in English].
9. Frydrychowicz-Jastrzębska G. El Hierro Renewable Energy Hybrid System: A Tough Compromise. Energies. 2018. № 11(10). P. 2812. https://doi.org/10.3390/en11102812. [in English].
10. Latorre F.G., Quintana J.J., Nuez I. Technical and economic evaluation of the integration of a wind-hydro system in El Hierro island. Renewable Energy. 2019. Vol. 134. Pp. 186-193.
https://doi.org/10.1016/j.renene.2018.11.047. [in English].
11. Vasko P., Verbovij A., Moroz A., Pazych S., Ibragimova M., Sahno L. Concept of Accumulation of Energy from Photovoltaic and Wind Power Plants by Means of Seawater Pumped Hydroelectric Energy Storage. 2019 IEEE 6th International Conference on Energy Smart Systems (2019 IEEE ESS). April 17-19. 2019. Kyiv. Ukraine. Pp. 188-191. https://doi.org/10.1109/ESS.2019.8764167. [in English].
12. Vasko, V.P., Vasko P.F. Dinamika nagruzochnyih rezhimov rabotyi vetroelektricheskoy ustanovki, obuslovlennaya poryivami vetra. [Dynamics of loading modes of the wind-electric installation, caused by gust of wind]. Bulletin of the Donbas State Academy of Civil Engineering and Architecture. Collection of scientific work. 2001. № 4(29). Pp. 140-144. [in Ukrainian].
13. Vasko P.F., Vasko V.P., Danylenko O.I., Doliuk V.V. Eksperymentalni doslidzhennia rezhymiv heneruvannia ta spozhyvannia reaktyvnoi potuzhnosti seriinoiu vitroelektrychnoiu ustanovkoiu z asynkhronnym heneratorom. [Experimental studies of the modes of generation and consumption of reactive power by a serial wind-driven installation with an asynchronous generator]. Renewable energy. 2008. № 1. Pp. 34-38. [in Ukrainian].
14. Martinez-Lucas G., Sarasua J.I., Sanchez-Fernandez J.A. FrequencyRegulationof a Hybrid Wind–HydroPowerPlant in an Isolated Power System. Energies. 2018. № 1. 239 p. [in English].
15. Sarasua J.I., Martinez-Lucas G., Platero C.A., Sanchez-Fernandez J.A. Dual Frequency Regulation in Pumping Modein a Wind–Hydro Isolated System. Energies. 2018. № 11. 2865 p. https://doi.org/10.3390/en11112865. [in English].
16. Sarasua J.I., Martinez-Lucas G., Lafoz M. Analysis of alternative frequency control schemes for increasing renewable energy penetration in El Hierro Island power system. International Journal of Electrical Power & Energy Systems. 2019. Vol. 113. Pp. 807-823. https://doi.org/10.1016/j.ijepes.2019.06.008. [in English].
17. Bryl А.O., Vasko V.P., Vasko P.F., Solovyov P.B. Matematičeskoe modelirovanie nestacionarnyh lektromehaničeskih processov gidroèlektričeskih agregatov malyh GES s razlicnymi tipami generatorov ri parallelnoj robote s elektrosistemoj. [Mathematical modeling of non-stationary electromechanical processes of hydroelectrical hardware for small hydro power stations with different types of generators at parallel functioning with electric system]. Alternative Energy and Ecology ISJAEE. 2013. № 3. Pp. 143-150. [in English].
18. Voldek A.I. Elektricheskie mashiny. [Electric machines]. 2 edition. L. Energy. 1974. 840 p. [in Russian].
19. Ivanov-Smolenskiy A.V. Elektricheskie mashinyi. [Electric machine]. Moscow. Energia. 1980. 928 p. [in Russian].
20. Venikov V.A. Perehodnyie elektromehanicheskie protsessyi v elektricheskih sistemah. [Transient electromechanical processes in electrical systems]. Moscow. High school. 195. 536 p. [in Russian].
21. Kulikov U.A. Perehodnyie protsessyi v elektricheskih sistemah. [Transients in electrical systems]. Novosibirsk. Publisher. NSTU. 2006. 284 p. [in Russian].
22. Bessonov L.A. Teoreticheskie osnovyi elektrotehniki. Elektricheskie tsepi. [Theoretical Foundations of Electrical Engineering. Electric circuits]. Ucheb. dlya elektrotehn., energ., priporostroit. spets. vuzov 9 izd., pererab. i dop. Moscow. High school. 1996. 638 p. [in Russian].
23. Malyar V.S. Teoretychni osnovy elektrotekhniky. Elektrychni kola. [Theoretical foundations of electrical engineering. Electric circuits]. Tutorial. Lviv. Lviv Polytechnic Publishing House. 2012. 312 p. [in Ukrainian].
24. Vasko P.F., Pazych S.T. Modeliuvannia dynamiky navantazhuvalnykh rezhymiv roboty hidronasosnoi stantsii z elektropryvodom za zhyvlennia vid vitroelektrychnoi ustanovky z synkhronnym heneratorom. [Modeling dynamics loading modes work of the hydro-pump station with the electric drive from power supply of the wind electric installation with the synchronous generator]. Vidnovluvana energetika. 2020. № 1. Pp .61-73. https://doi.org/10.36296/1819-8058.2020.1(60).61-73. [in Ukrainian].

Abstract views: 37
PDF Downloads: 27
Published
2020-09-28
How to Cite
Vasko, P. (2020). APPROXIMATE SUBSTITUTION ELECTRICAL ЕQUIVALENT CIRCUIT OF EXPLICIT POLE SYNCHRONOUS GENERATOR FOR ANALYSIS OF LOADING OPERATING MODES AUTONOMOUS WIND-ELECTRIC AND HYDROELECTRIC INSTALLATIONS. Vidnovluvana Energetika, (3(62), 51-61. https://doi.org/10.36296/1819-8058.2020.3(62).51-61