ENERGY EFFICIENCY OF WIND-HYDRO PUMPING STATION SIGNIFICANT POWER

Keywords: wind turbine, hydraulic pump, dynamics, inertia, flow, synchronous generator, stochasticity.

Abstract

The development of renewable energy sources in Ukraine is characterized by rapid pace. As of September 2020, the installed capacity of wind station (WPP) and photovoltaic (FPP) stations is about 6 GW, which corresponds to almost 20% of the maximum load of the power system at the current time. Therefore, today the problem of accumulation of stochastic electricity supply of wind farms and power plants in the power system, due to the inconsistency of schedules of generation and consumption of power, is becoming relevant. The idea of using pumped storage hydro station (PSH) to store stochastic energy input of wind farms and power plants is beginning to find its practical implementation. In Spain, a wind-diesel power station has been operating for several years to supply water to the 11 MW PSH battery pool. The experience of operation of this complex has shown a significant reduction in its energy efficiency due to the stochastic nature of wind energy. Therefore, it is time to solve the problem of determining the energy efficiency of the process of converting the kinetic energy of wind into potential energy of water accumulated in the accumulator pool, taking into account the presence of wind speed pulsations. In this work, the energy efficiency of a powerful hydraulic pumping station when powering pump motors from a wind power plant is evaluated, taking into account the pulsations of wind speed and the number of hydroelectric units in the station. The determination of quantitative values of the estimated parameters was based on the results of mathematical modeling of the dynamics of loading modes of operation of the wind pumping station taking into account the stochastic change of wind speed. The mathematical model is a system of nonlinear differential equations that describes the interaction of two inertial components of a single aero-electro-hydro-dynamic system. The rational ratio of the number of hydraulic pumps in the pumping station to achieve the maximum values of the utilization factor of the installed capacity of the wind pumping station is determined. Ref. 29, fig. 6.

Author Biographies

P. Vasko, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

vasko.jpgAuthor information:  Doctor of Technical  Sciences majoring in «Renewable Energy  Transformation», Head of Hydropower Department of the Institute of Renewable Energy NAS of Ukraine.
Education: National Technical University of Ukraine «Kyiv Polytechnic Institute».
Research area: alternative energy, energy saving, conversion of renewable energy types and installations based on them, small hydropower
Publications: 254.

S. Pazych, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

pazych1.jpgAuthor information: : candidate of technical sciences in the field of «Renewable Energy Transformation», junior researcher of Hydropower Engineering Department, Institute of Renewable Energy NAS of Ukraine.
Education: National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». Specialty «Non-traditional and renewable energy sources».
Publications: 22

A. Bryl, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

bril.pngAuthor information: researcher at the Hydropower Department of the Institute for Renewable Energy of the National Academy of Sciences of Ukraine.
Education: National Technical University of Ukraine «Kyiv Polytechnic Institute». Specialty «Electrical networks and systems».
Research area: conversion of renewable energy types and installations based on them, small hydropower.
Publications: 48.

References

1. The power system of Ukraine is installed. Ukrenergo. [Electronic resource]. URL: https://ua.energy/vstanovlena-potuzhnist-energosystemy-ukrayiny/. (Applying date: 23.11.2020). [in Ukrainian].
2. Hornsdale Power Reserve. [Electronic resource]. URL: https://hornsdalepowerreserve.com.au/.
(Applying date: 23.11.2020). [in English].
3. Energy Storage Technology Roadmap. Technology Annex. International Energy Agency (IEA). 2014. [Electronic resource].URL: https://www.iea.org/media/freepublications/technologyroadmaps/AnnexA_TechnologyAnnexforweb.pdf. (Applying date: 23.11.2020). [in English].
4. Espejo de Tarapaca. [Electronic resource]. URL: http://valhalla.cl/espejo-de-tarapaca/. (Applying date: 23.11.2020). [in English].
5. Max Bogl Wind AG. [Electronic resource]. URL: http://www.mbrenewables.com/en/pilot-project/. (Applying date: 23.11.2020). [in English].
6. Merino J., Veganzones C., Sanchez J.A., Martinez S., Platero C.A. Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands. Energies. 2012. № 7. Pp. 2351-2369. https://doi.org/10.3390/en5072351. [in English].
7. Grazyna Frydrychowicz-Jastrzębska. El Hierro Renewable Energy Hybrid System: A Tough Compromise. Energies. 2018. № 11(10). 2812 p. https://doi.org/10.3390/en11102812. [in English].
8. Latorre F., Quintana J.J., Nuez I. Technical and economic evaluation of the integration of a wind-hydro system in El Hierro island. Renewable Energy. 2019. Vol. 134. Pp. 186-193. https://doi.org/10.1016/j.renene.2018.11.047. [in English].
9. Vasko V.P., Vasko P.F. Dinamika nagruzochnyih rezhimov rabotyi vetroelektricheskoy ustanovki, obuslovlennaya poryivami vetra. [Dynamics of loading modes of the wind-electric units, caused by gust of wind]. Bulletin of the Donbas State Academy of Civil Engineering and Architecture. Collection of scientific work. 2001. No. 4(29). Pp. 140-144. [in Russian].
10.Vasko P.F., Vasko V.P., Danylenko O.I., Doliuk V.V. Eksperymentalni doslidzhennia rezhymiv heneruvannia ta spozhyvannia reaktyvnoi potuzhnosti seriinoiu vitroelektrychnoiu ustanovkoiu z asynkhronnym heneratorom. [Experimental studies of the modes of generation and consumption of reactive power by a serial wind power units with an asynchronous generator]. Vidnovluvana energetika. 2008. No. 1. Pp.34-38. [in Ukrainian].
11. Pazych S.T. Aproksimatsіya ayeromekhanіchnikh kharakteristik vіtrovoї turbіni vіtrovodonasosnoї ustanovki v navantazhuvalnikh rezhimakh roboti metodom zamіni zmіnnikhs. [Approximation of aeromechanical characteristics of the wind turbine of a wind pump installation in the load operation modes by the method of changing the variables]. Vidnovluvana energetika. 2018. No. 1. Pp. 62-69. [in Ukrainian].
12. Abramovskiy E.R., Gorodko S.V.,Sviridov N.V. Aerodinamika vetrodvigateley. [Aerodynamics of wind turbines]. Dnepropetrovsk. Publisher DGU. 1987. 220 p. [in Russian].
13. ІЕС 61400-12-1998. Wind turbine generator systems. Part 12. Wind turbine power performance testing. [in English].
14. Arshenevskyi N.N. Obratymie hydromashyny dlia hydroakkumulyruiushchykh elektrostantsyi. [Reversible hydraulic machines for pumpedhydroelectricenergystorage]. Leningrad. Energia. 1977. 240 p. [in Russian].
15. Stepanoff A.I. Tsentrobezhnyie I osevyie nasosyi [Centrifugal and axial flow pumps]. Moscow. Mashgiz. 1960. 464 p.[in Russian].
16. Voskoboynik V.E., Boroday V.A. Osnovyi elektroprivoda proizvodstvennyih mashin i kompleksov . [Fundamentals of electric drive of production machines and complexes]. Dnepropetrovsk. State University «NSU». 2015. 121 p. [in Russian].
17. Monin A.S., Yaglom A.M. Statisticheskaya gidromehanika (Mehanika turbulentnosti). [Statistical fluid mechanics. (Mechanics of turbulence)]. Part 2. M. Nauka. 1967. 720 p. [in Russian].
18. Krivtsov V.S., Oleynikov A.M., Yakovlev A.I. Neischerpaemaya energiya. Kn. 2. Vetroenergetika. [Inexhaustible energy. B. 2. Wind power]. Textbook. 2004. 519 p. [in Russian].
19. Panchev S., Sluchaynyie funktsii i turbulentnost. [Randomfunctions and turbulence]. Leningrad. Gidrometeoizdat. 1967. 448 p.[in Russian].
20. Vasko P.F., Pazych S.T. Modeliuvannia dynamiky navantazhuvalnykh rezhymiv roboty hidronasosnoi stantsii z elektropryvodom za zhyvlennia vid vitroelektrychnoi ustanovky z synkhronnym heneratorom. [Modeling dynamics loading modes work of the hydro-pump station with the electric drive from power supply of the wind electric installation with the synchronous generator]. Renewable energy. 2020. No. 1. Pp. 61-73. [in Ukrainian].
21. Vasko P.F. Nablyzhena zastupna elektrychna skhema synkhronnoho yavnopoliusnoho heneratora dlia analizu navantazhuvalnykh rezhymiv roboty avtonomnykh vitro- ta hidroelektrychnykh ustanovok. [Approximate substitution electrical еquivalent circuit of explicit pole synchronous generator for analysis of loading operating modes autonomous wind-electric and hydroelectric units]. Vidnovluvana energetika. 2020. No. 3. Pp. 51-61. [in Ukrainian].
22. Bryl A.A., Vasko P.F. Pekur P.P., Opredelenie tehnicheskih pokazateley effektivnosti ispolzovaniya vetroelektricheskih agregatov v Ukraine. [Definition of technical indicators of efficiency of use the wind-electric aggregates in Ukraine]. Energy and electrification. 1995. No. 2. Pp. 48-51. [in Russian].
23. Vasko P.F. Razrakhunok pokaznykiv tekhnichnoyi efektyvnosti zastosuvannya vitroelektrychnykh ustanovok za rezultatamy strokovykh vymiryuvan shvydkosti vitru. [Calculation of the technical efficiency of the application of wind power units based on the results of term velocity measurements wind speed]. Technical electrodynamics. 2001. No. 6. Pp. 45-49. [in Ukrainian].
24. Kіnash R.І.. Burnaєv O.M. Vіtrove navantazhennya і vіtroyenergetichnі resursi v Ukrainі. [Wind load and wind energy resources in Ukraine ]. Lviv. View. Sci.-Tech. Lit. 1998. 1152 p. [in Ukrainian].
25. Wind potential data on the world map. [Electronic resource]. URL: https://www.renewables.ninja/. (Applying date: 23.11.20). [in English].
26. Vasko P.F., Verbovyi A.P., Pazych S.T. Realizatsiia stokhastychnoi dvoparametrychnoi modeli pozdovzhnoi skladovoi shvydkosti vitru dlia zadach vitroenerhetyky. [Implementation of a stochastic two-parameter model of the longitudinal component of the wind speed for wind power problems]. Vidnovluvana energetika. 2017. No. 3. Pp. 54-61. [in Ukrainian].
27. Pugachev V.S. Vvedenie v teoriyu veroyatnostey [Introduction to probability theory]. M. Nauka. 1968. 368 p. [in Russian].
28. Vasko P.F., Verboviy A.P., IbragImova M.R. Pazych S.T. Gidroakumulyuvalni elektrostantsiyi – tehnologichna osnova Integratsiyi potuzhnih vitro- ta fotoelektrichnih stantsiy do skladu elektroenergetichnoyi sistemi Ukrayini. [Pumped hydroelectric energy storage – technological basis of integration of powerful wind and photoelectric power stations into the power system of Ukraine]. Hydropower of Ukraine. 2017. No. 1-2. Pp. 20-25. [in Ukrainian].
29. Vasko P., Verbovij A., Moroz A., Pazych S., Ibragimova M., Sahno L. Concept of Accumulation of Energy from Photovoltaic and Wind Power Plants by Means of Seawater Pumped Hydroelectric Energy Storage. 2019 IEEE 6th International Conference on Energy Smart Systems (2019 IEEE ESS). April 17-19. 2019. Kyiv. Ukraine. Pp. 188-191. https://doi.org/10.1109/ESS.2019.8764167.
(Applying date: 23.11.20). [in English].

Abstract views: 138
PDF Downloads: 76
Published
2020-12-28
How to Cite
Vasko, P., Pazych, S., & Bryl, A. (2020). ENERGY EFFICIENCY OF WIND-HYDRO PUMPING STATION SIGNIFICANT POWER. Vidnovluvana Energetika, (4(63), 69-79. https://doi.org/10.36296/1819-8058.2020.4(63).69-79