Keywords: energy saving of constructions, energy active protections, static system, modular design, reliability indicator, telescopic mechanism, projection plane, ventilation systems, solar cycle.


One of the main tasks of energy today is to solve the problem of energy consumption in the residential and industrial sectors. The economic situation and energy independence of consumers directly depend on the results of solving this problem, especially in conditions of limited access to energy resources. In this work, the best way to solve the problem of energy consumption involves the introduction of energy-active technologies. The article lists the advantages and disadvantages of different methods of construction of energy-efficient fencings and identifies the direction of their improvement. The considered methods of execution of energy-active fencings include use of a design with the rotary mechanism, a static design with fixed elements, complex, separate, and also a design with the variable sizes. The theoretical analysis of the considered technical decisions is carried out, and also the comparison of efficiency of functioning in various conditions, taking into account needs and requirements of the consumer is carried out. The method of improvement of technology of energy-active fencings which leads to formation of a design of the device which are capable to show high technical and power characteristics under various operating conditions is defined. The paper formulates the idea of ​​an innovative dynamic system, which is based on the mechanism of frontal telescopic movement, as well as a variant of energy-active fencings, which is based on this principle. The results are confirmed by calculations performed on the basis of the SolidWorks software package. The introduction of the developed designs of energy-efficient fencings will help solve the problem of reducing the energy dependence of consumers in the industrial, agricultural and housing and communal sectors. The article identifies areas for further development and improvement of structures of energy-active fencings and shows the need for research on the features of their operation. Ref. 15, tab. 1, fig. 5.

Author Biographies

V. Svirsa , Dnipro National University named after Oles Honchar, 49000, 72, Gagarina avenue, Dnipro, Dnipropetrovsk region, Ukraine.

Svirsa.pngAuthor information: Oles Honchar Dnipro National University student
Education: secondary education
Reasearch area: the renewable and alternative energy sources, energy providing
Publications: 10 scientific works

L. Nakashidze , Dnipro National University named after Oles Honchar, 49000, 72, Gagarina avenue, Dnipro, Dnipropetrovsk region, Ukraine.

Author information: Ph.D., seniorres. Science, director of the Energy Research Institute Oles Honchar Dnipro National University
Education: Dnepropetrovsk Institute of Chemical Technology, Faculty of Technology of inorganic compounds, specialty technology of inorganic compounds (1985)
Research area: the renewable and alternative energy sources
Publications: more than 150 scientific works


1. Alyautdinova Y.A. Ispolzovanie solnechnoj energii dlya snizheniya teplopoter zdaniya [Using solar energy to reduce heat loss in a building]. Vestnik BGTU n.a. V.G. Shukhov. 2018. № 11. Pp. 47–52. [in Russian]
2. Basok B.I., Nakorcheskij A.I. Teplofizika vliyaniya solnechnogo izlucheniya na zdaniya. [Thermal physics of the influence of solar radiation on buildings]. Kyiv. publ. «Naukova dumka» NAS of Ukraine. 2016. 224 p. [in Russian].
3. Gabrinec V.O., Markov V.L. and others. Doslidzhennya osoblivostej pobudovi energoaktivnih ogorodzhen yak elementiv sistem energozabezpechennya. [Research of peculiarities of construction of energy-active fencings as elements of energy supply systems]. Problemy vysokotemperaturnoj tehniki: collection of scientific papers. Dnipro. DNU n.a. Oles Honchar. 2011. Pp. 7–14. [in Ukrainian].
4. Garbinec V.O., Nakashidze L.V., Sokol G.I. and others. Formuvannya shemnih rishen sistemi aklimatizaciyi sporud v robochomu seredovishi alternativnih dzherel energiyi: monografiya. [Formation of circuit solutions of the system of acclimatization of buildings in the working environment of alternative energy sources: a monograph]. Dnipro. DNU n.a. Oles Honchar. Ltd. «Akcent PP». 2016. 152 p. [in Ukrainian].
5. Gabrinec V.O., Nakashidze L.V., Markov V.L. and others. Osoblivosti pobudovi energoaktivnih ogorodzhen u skladi sistem energozabezpechennya na osnovi VDE. [Features of construction of energy-active fencings as a part of power supply systems on the basis of RES]. Vidnovlyuvana energetika. 2010. No. 3. Pp. 31–34. [in Ukrainian].
6. Nakashidze L.V. Osnovni vimogi do energoaktivnih ogorodzhen. [Basic requirements for energy-efficient fences]. Vidnovlyuvana energetika. 2013. No. 1. Pp. 48–51. [in Ukrainian].
7. Nakashidze L. V. Osoblivosti viboru konstrukciyi peretvoryuvachiv energiyi sonyachnogo viprominyuvannya v sistemah energozabezpechennya sporud: monografiya. [Features of a choice of a design of converters of energy of solar radiation in systems of power supply of constructions: a monograph]. Dnipro. DNU n.a. Oles Honchar. Ltd. «Akcent PP». 2018. 119 p. [in Ukrainian].
8. Nakashidze L.V. Teplotehnichni osoblivosti pobudovi energoaktivnogo ogorodzhennya. [Thermotechnical features of construction of an energy-active fencing]. Vidnovlyuvana energetika. 2013. No. 2. Pp. 49–53. [in Ukrainian].
9. Nakashidze L.V. Uluchshenie ekspluatacionnyh harakteristik sooruzhenij pri ispolzovanii energii alternativnyh istochnikov. [Improving the performance of facilities using energy from alternative sources]. International scientific journal «Alternativnaya energetika i ekologiya». 2014. № 23. Pp. 84–89. [in Russian].
10. Nakashidze L.V., Garbinec V.A. Formirovanie sostava sistemy energoobespecheniya, ispolzuyushej energiyu alternativnyh istochnikov. [Formation of the composition of the energy supply system using the energy of alternative sources].

Construction, materials science, mechanical engineering: collection of scientific papers. Series: Innovacionnye tehnologii zhiznennogo cikla obektov zhilishno-grazhdanskogo, promyshlennogo i transportnogo naznacheniya GVUZ «Pridnepr. gos. akademiya str-va i arhitektury». Dnipro. 2016. No. 87. Pp. 84–91. [in Russian].
11. Gabrinec V.O., Zarivnyak G.I., Mitrohov S.O., Nakashidze L.V. Patent for a utility model UA61489. Ukraine. IPC F24G 2/50. E04B 1/76. Energoaktivne ogorodzhennya [Energy-active fencing]. No. u201014333. Declared. 30.11.2010. Issued 25.07.2011. Bull. No.14. [in Ukrainian].
12. Nakashidze L.V., Shevchenko M.V., Gabrinec V.O. Patent for a utility model UA109070. Ukraine. IPC F24G 2/50. E04B 1/76. Energoaktivne ogorodzhennya [Energy-active fencing].Declared. 16.02.2016. Issued. 01.08.2016. Bull. No. 15. [in Ukrainian].
13. Protasevich A.M., Leshekevich A.M. Raschet temperaturnogo polya mnogoslojnyh ograzhdayushih konstrukcij s teploprovodnymi vklyucheniyami metodom konechnyh elementov. [Calculation of the temperature field of multilayer enclosing structures with heat-conducting inclusions by the finite element method]. Energy efficiency. Minsk. 2013. No. 10. Pp. 16–20. [in Russian].
14. Uproshennaya model solnechnogo nagreva poverhnostej. [Simplified model of solar surface heating]. Bogdan’s blog. 2014. [Electronic resource].
URL: [in Russian].
15. Fokin V.M. and others. Osnovy energosberezheniya v voprosah teploobmena. [Basics of energy saving in matters of heat transfer]. M. «Izdatelstvo Mashinostroenie-1». 2005. 192 p. [in Russian].

Abstract views: 17
PDF Downloads: 9
How to Cite