APPROXIMATION OF UNIVERSAL CHARACTERISTICS OF HYDROTURBINES BY ENGINEERING GEOMETRY METHODS

Keywords: hydroturbine, approximation, line, surface, spline, characteristic.

Abstract

The application of engineering geometry methods for approximation of functional two-parameter dependences of universal characteristics of hydroturbines, which are a set of open and closed lines on the plane, which characterize the results of experimental studies of physical models of turbines, is tested. Universal characteristics are given in the nomenclature of hydroturbines and serve as initial information for a choice of parameters of full-scale samples and definition of modes of their effective operation. They allow you to calculate the diameter of the impeller to obtain a given power; nominal turbine speed;  values coefficient of performance and allowable suction heights at all pressures and capacities; opening of the directing device for any loading of the turbine. Conducting multivariate computational research requires digital processing of the original graphical information and its further use, so the issues of approximation of curves and surfaces by cubic spline functions, graphical determination of surface maxima, graphical determination of surface cross section were considered. Methodical provisions for determining the energy-efficient mode of operation of propeller and radial-axial hydraulic turbines at variable water flow rates and speed have been developed. The provisions are based on the application of engineering geometry methods to approximate the universal characteristics of the turbine in the form of the surface of a three-dimensional geometric body and determine the surface maxima, which characterizes the optimal functional relationship between the opening of the guide and speed and provides maximum energy turbines. An algorithm for calculating the coefficients of approximation cubic spline functions of the universal characteristic of a hydroturbine for determining and implementing the laws of control of energy-efficient modes of operation of hydraulic units with simultaneous change of two control parameters is proposed. The algorithm consists in approximating the initial universal characteristic of the hydroturbine to a uniform grid of control parameters with the subsequent direct calculation of coefficients of spline functions on recurrent relations. Bibl.. 17, fig. 7.

Author Biography

P. Vasko, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

vasko.jpgAuthor information:  Doctor of Technical  Sciences majoring in «Renewable Energy  Transformation», Head of Hydropower Department of the Institute of Renewable Energy NAS of Ukraine.
Education: National Technical University of Ukraine «Kyiv Polytechnic Institute».
Research area: alternative energy, energy saving, conversion of renewable energy types and installations based on them, small hydropower
Publications: 257.

References

1. DSTU 2842-94. Turbiny hidravlichni. Terminy ta vyznachennia. [Hydraulic turbines. Terms and definitions]. Kyiv. State Standard of Ukraine. 1995. 35 p. [in Ukrainian].
2. Kryvchenko H.Y. Gidravlicheskiye mashiny: Turbiny i nasosy. [Hydraulic machines: Turbines and pumps]. Textbook for universities. M. Energiya. 1978. 320 p [in Russian].
3. Shchavelev D.S. Gidroenergeticheskiye ustanovki. [Hydropower installation]. L. Energoizdat. 1981. 520 p. [in Russian].
4. Foks A. Pratt M. Vychislitelnaya geometriya. Primeneniye v proyektirovanii i na proizvodstve. [Computational geometry. Application in design and production]. M. Mir. 1982. 304 p. [in Russian].
5. Preparata F., Sheymos M. Vychislitelnaya geometriya. [Computational geometry. Introduction]. Vvedeniye. Moscow. Mir. 1989. 478 p. [in Russian].
6. Zavialov Yu.S., Leus V.A., Skorospelov V.A. Splayny v inzhenernoy geometrii. [Splines in engineering geometry]. M. Mashinostroyeniye. 1985. 224 p. [in Russian].
7. Kvasov B.I. Metody izogeometricheskoy approksimatsii splaynami. [Isogeometric spline approximation methods]. Moscow. Fizmatlit. 2006. 360 p. [in Russian].
8. Golovanov N.N. Geometricheskoye modelirovaniye. [Geometric modeling]. Moscow. Fizmatlit. 2002. 472 p. [in Russian].
9. Nikulin E.A. Kompyuternaya geometriya i algoritmy mashinnoy grafiki. [Computer geometry and computer graphics algorithms]. SPb. BKhV-Peterburg. 2003. 560 p. [in Russian].
10. Ryabinin K.V. Vychislitelnaya geometriya i algoritmy kompyuternoy grafiki. Rabota s 3D-grafikoy sredstvami OpenGL. [Computational geometry and computer graphics algorithms. Working with 3D graphics by means OpenGL]. Perm. Perm. gos. nats. issled. un-t. 2017. 100 p. [in Russian].
11. Vasko P.F., Moroz A.V. Zakonodatelnye stimuly i prirodookhrannye ogranicheniya ispolzovaniya gidroenergeticheskikh resursov malykh rek Ukrainy. [Legislative Incentives and Environmental Restrictions on the Use of Hydropower Resources of Small Rivers of Ukraine]. Alternativnaya energetika i ekologiya (ISJAEE). 2014. No. 15. Pp. 82–92. [in Russian].
12. Bryl A.A., Vasko P.F., Moroz A.V., Ibragimova M.R. Ekolohichni aspekty rozvytku hidroenerhetyky v Ukrayini. [Ecological aspects of hydropower development in Ukraine]. Vidnovluvana energetіka. 2018. No. 2. Pp. 57–69. [in Ukrainian].
13. Bryl A.O., Vasko P.F., Moroz A.V. Normatyvno-pravovi aspekty vykorystannia v Ukraini hidroenerhetychnoho potentsialu zvorotnykh vod tekhnolohichnykh protsesiv za “zelenym” taryfom na henerovanu elektroenerhiiu. [Regulatory aspects of use hydroenergy potential in ukraine of return watersof technological processes by «green» tariff at the generated electricity]. Vidnovliuvana enerhetyka. 2021. No. 1. Pp. 59–69. [in Ukrainian].
14. Vasko P.F. Povysheniye energeticheskoy effektivnosti malyk hgidroelektrostantsiy putem primeneniya peremennoy chastoty vrashcheniya gidroagregatov. [Increasing power efficiency of small hydro-power plants by implementing variable rotation frequency of hydraulic units]. Alternativnaya energetika i ekologiya (ISJAEE). 2011. No. 8. Pp. 115–132. [in Russian].
15. Moroz A.V. 3D modeliuvannia hidromekhanichnykh kharakterystyk malykh hidroelektrostantsii. [3D simulation of hydromechanical characteristics of small hydropower plants]. Vidnovliuvana enerhetyka. 2020. No. 2. Pp. 70–79. [in Ukrainian].
16. Shapoval I.A., Mykhalskyi V.M., Artemenko M.Iu., Polishchuk S.I., Chopyk V.V. Kompleksy heneruvannia elektroenerhii z funktsiiamy kompensatsii reaktyvnoi potuzhnosti ta aktyvnoi filtratsii na bazi mashyny podviinoho zhyvlennia. [Power generation complexes with reactive power compensation and active filtration functions based on dual power supply machine]. Monohrafiia. Kyiv. Institute of Electrodynamics NAS of Ukrainy. 2020. 241 p. [in Ukrainian].
17. Vasko P.F., Vasko V.P., Ozorin D.F. Dvovymirna splain-aproksymatsiia hidromekhanichnykh ta enerhetychnykh kharakterystyk hidromashyn v rezhymakh nasos-turbina za zminnoi chastoty obertannia. [Two-dimensional approximation of hydromechanical and energy characteristics of hydraulic machines in pump-turbine modes at variable speed]. Vidnovluvana energetika. 2010. No. 3. Pp. 64–72. [in Ukrainian].

Abstract views: 19
PDF Downloads: 19
Published
2021-09-30
How to Cite
Vasko, P. (2021). APPROXIMATION OF UNIVERSAL CHARACTERISTICS OF HYDROTURBINES BY ENGINEERING GEOMETRY METHODS. Vidnovluvana Energetika, (3(66), 62-71. https://doi.org/10.36296/1819-8058.2021.3(66).62-71