# MODELING OF PUMPED HYDRO STORAGE STATION IN GENERATOR MODE PARALLEL WITH WIND POWER PLANT ON AUTONOMOUS ENERGY SYSTEM

• A. Verbovij Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.
Keywords: stochastic, pumped storage hydro station, speed, frequency, voltage, current.

### Abstract

As the installed capacity of renewable energy sources based on solar and wind power plants increases, the need for backup power sources increases. The disadvantages of renewable energy sources, which limit their widespread use, are the low density of energy flows and their variability over time. This factor especially affects the production of electricity by wind and photo power plants: the schedule of energy production is probabilistic. The source of shunting power can be a storage power plant. Hydro accumulation power plants have long established themselves as relatively simple and reliable stations with maximum maneuverability - fast dialing and load relief, a wide range of regulation.

A simulation model of a hydro-accumulating power plant in the generator mode of operation in parallel with a wind power plant on an autonomous network has been developed. The known model of a wind turbine with an asynchronous generator as a part of a wind diesel system in the isolated electric network which was supplemented was supplemented by blocks of the hydraulic turbine with the regulator and the synchronous generator is taken. The model is implemented in a modern mathematical package MATLAB. With the help of the created model theoretical researches of work of the wind turbine with the asynchronous generator at application of a stochastic component of wind speed were carried out. The influence of the stochastic component of wind speed on the output parameters of the asynchronous generator, such as speed, frequency, voltage, current, was analyzed. Studies of a hydraulic turbine and a synchronous generator in dynamic and quasi-static modes of operation were also carried out. The developed simulation model of PSP operation in parallel with the wind farm on the autonomous network allows to study the parameters of electric energy in stationary, transient, and emergency modes. It is proved that the stochastic component of wind speed significantly affects the speed and frequency of the network, which causes a change in the output electrical parameters that affect the entire electromechanical system. Ref.21, fig. 7.

### Author Biography

A. Verbovij, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

Author information: senior research  of Hydropower Engineering Department, Institute of Renewable Energy NAS of Ukraine
Education: Natiωnal Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». Specialty: "Electric drive and automation of industrial instalations”.
Research area: conversion of renewable energy types, small hydropower.
Publications: 129.

### References

1. Krivcov V.S.,Alejnikov A.M., Yakovlev A.I. Neischerpaemaya energiya. Kn.1. Vetroelektrogeneratory. [Inexhaustible energy. Book 1. Wind power generators]. Uchebnik. Harkov: Nac. aerokosm. un-t «Hark.aviac. in-t». Sevastopol. Sevast. nac. tekhn. un-t. 2003. 400 p. [in Russian].
2. J. Charles Barnhart, Michael Dale, Adam R. Brandtb and Sally M. Bensona. The energetic implications of curtailing versus storing solar- and wind-generated electricity. Energy Environ. Sci. 2013. 6. Pp. 2804–2810. [in English].
3. Vasko P., Verbovij A., Moroz A., Pazych S. Ibragimova M., Sahno L. Concept of Accumulation of Energy from Photovoltaic and Wind Power Plants by Means of Seawater Pumped Hydroelectric Energy Storage. 2019 IEEE 6th International Conference on Energy Smart Systems (ESS). Kyiv. Ukraine. 2019. Pp. 188–191. doi: 10.1109/ESS.2019.8764167. [in English].
4. Vasko P.F., Ibragimova M.R., Pazych S.T. Gidroakumuliruyushchie elektrostancii na morskoj vode – tekhnologicheskaya osnova krupnomasshtabnogo ispolzovaniya vetrovoj i solnechnoj energii v elektroenergeticheskoj sisteme Kryma. [Hydroelectric seawater power plants are the technological basis for the large-scale use of wind and solar energy in the Crimean power system]. Alternative Energy and Ecology. ISJAEE. No. 15(155). 2014. Pp. 38–49. ISSN 1608–8298. [in Russian].
5. Vasko P.F., Verbovyi A.P., Ibrahimova M.R., Pazych S.T. Hidroakumuliuvalni elektrostantsii – tekhnolohichna osnova intehratsii potuzhnykh vitro- ta fotoelektrychnykh stantsii do skladu elektroenerhetychnoi systemy. [Hydroaccumulation power plants are the technological basis for the integration of powerful wind and photovoltaic power plants into the power system]. Hidroenerhetyka Ukrainy. 2017. No. 1-2. Pp. 20–25. [in Ukrainian].
6. Haritonov V.P. Avtonomnye vetroelektricheskie ustanovki. [Autonomous wind power plants]. M. 2006. 280 p. [in Russian].
7. Holodov D.V., Obuhov E.V., Stepanov V.N., Polnarev S.Ya. Netradicionnye strategii v osvoenii prirodnyh energoresursov primorskih regionov Ukrainy. [Non-traditional strategies in the development of natural energy resources of the coastal regions of Ukraine]. O. Astroprint. 2003. 162 p. [in Russian].
8. Serebryanikov N.I., Rodionov V.G., Kuleshov A.P., Magruk V.I., Ivanushchenko V.S. Gidroakkumuliruyushchie elektrostancii. [Pumped storage power plants. Construction and operation of the Zagorskaya PSPP]. Stroitelstvo i ekspluataciya Zagorskoj GAES. M. Izdatelstvo NC ENAS. 2000. 368 p. ISBN 5-93196-024-4. [in Russian].
9. Sinyugin V.Yu., Magruk V.I., Rodionov V.G. Gidroakkumuliruyushchie elektrostancii v sovremennoj elektroenergetike. [Pumped storage power plants in the modern electric power industry]. M. Izdatelstvo NC ENAS. 2008. 352 p. ISBN 978-593196-917-6. [in Russian].
10. Schnitzer V. Pumpenantriebe mit regenerativer Energie; ihre besondere Anforderungen an Pumpen. Pumpentagung Karlsruhe92, Fachgemeinschaft Pumpen im VDMA. Frankfurt/Main. Oktober 1992. Beitrag A5–11. [in English].
11. Pumps as turbines for hydraulic energy recovery and small hydropower purposes in Poland. 2008. [Electronic resource]. URL: https://www.researchgate.net/publication/269992946 (Applying date: 12.09.2019). [in English].
12. Nourbakhsh A. Mini and Micro Hydropower Stations for Production Inexpensive Energy. HIDROENERGIA 2008–05–04. Intern. Conf. and Exhibition, SMALL HYDROPOWER. Bled–Slovenia. 11–13 June 2008. [in English].
13. Chernyh I. V. SIMULINK: sreda sozdaniya inzhenernyh prilozhenij. [SIMULINK: an environment for creating engineering applications]. M. DIALOG MIFI. 2004. 496 p. [in Russian].
14. Gagnon R., Saulnier B., Sybille G., Giroux P. Modeling of a Generic High-Penetration No-Storage Wind–Diesel System Using Matlab/Power System Blockset. 2002 Global Windpower Conference. April 2002. Paris. France. [in English].
15. Verbovyi A.P. Strukturna skhema imitatsiinoi modeli avtonomnoi hidroakumuliuvalnoi elektrostantsii. [Block diagram of a simulation model of an autonomous storage power plant]. Materialy 20 mizhnarodnoi nauk.–prakt. konferentsii «Vidnovliuvana enerhetyka i enerhoefektyvnist u 21 stolitti». 15–16 travnia 2019 r. Kyiv. Pp. 506-510. [in Ukrainian].
16. Lezhnyuk P.D., Nikitorovich R.V., Zhan-P’er Ngoma. Kompensaciya reaktivnoj moshchnosti asinhronnyh generatorov na malyh gidroelektrostanciyah. [Compensation of reactive power of asynchronous generators at small hydroelectric power plants]. Energetika i elektrotekhnika. Naukovі pracі. VNTU. 2008. No. 2. Pp. 1–7. [in Russian].
17. Singh P. Performance Evaluation of the Pump as Turbine based Micro Hydro Project in Kinko Village, Tanzania. P. Singh, V. Ramasubramanian, A. Rao. Himalayan Small Hydropower Summit, Dehradun. India. October 12–13. 2006. Pp. 159–166. [in English].
18. Maher P., Smith N. A., Williams A. A. Assessment of pico hydro as an option for off–gridelectrification in Kenya. Renewable Energy. 2003. Vol. 28. Pp. 1357-1369. [in English].
19. Vasko P.F., Verbovyi A.P., Pazych S.T. Realizatsiia stokhastychnoi modeli pozdovzhnoi skladovoi shvydkosti vitru dlia zadach vitroenerhetyky. [Implementation of a stochastic model of the longitudinal component of wind speed for wind energy problems]. Vidnovluvana energetika. 2017. No. 3. Pp. 54 61. [in Ukrainian].
20. Verbovyi A.P., Pazych S.T. Modeliuvannia dynamichnykh i kvazistatychnykh rezhymiv roboty vitrovodonasosnoi ustanovky z urakhuvanniam stokhastychnoi skladovoi shvydkosti vitru. [Modeling of dynamic and quasi-static modes of operation of a wind pump installation taking into account the stochastic component of wind speed]. Vidnovluvana energetika. 2018. No. 4(55). Pp. 25-33. [in Ukrainian].
21. Bryl A.O., Vasko V.P., Vasko P.F., Solovjov P.B. Matematicheskoe modelirovanie puskovyh rezhimov sinhronnyh i asinhronnyh generatorov malyh GES. [Mathematical modeling of starting modes of synchronous and asynchronous generators of small hydroelectric power plants]. Alternativnaya energetika i ekologіya (ISJAEE). 2014. No. 15. Pp. 71-81. [in Russian].

Abstract views: 25