Keywords: groundwater, heat pump, hydrothermal system, aquifer, low potential water energy


Groundwater is a highly efficient source of renewable low-potential energy, but the effective use of such systems depends largely on the preliminary study of the geological structure of the mountain range and the hydrogeological parameters of the aquifer. The aim of the study is to determine the dependence of technical and economic indicators of the hydrothermal heat pump system on the hydrogeological parameters of the aquifer. The main hydrogeological parameters that affect the thermal regime of the hydrothermal heat pump system are determined in the work. The hydrothermal experimental heat pump system developed and constructed at the Institute of Renewable Energy of the National Academy of Sciences of Ukraine is presented. It consists of a heat pump and two wells through, which water circulation from the underground horizon to the heat pump is provided. The method of conducting research is described. The description of the characteristics of the measuring equipment installed on the hydrothermal heat pump system and developed by the author of the interactive dispatching system based on the software product ESM (Engineering Systems Manager) using FBD programming language (Function Block Diagram/Continuous Function Chart), which was used to build the data system obtained in the process of conducting this research work. The results of the conducted experimental researches are given. The analysis of efficiency and investment attractiveness of the hydrothermal system is performed, where the low-potential thermal energy of the aquifer water is used as a renewable primary source of thermal energy for the heat pump operation. It is substantiated that the existing hydrothermal heat pump systems are not always adapted to the operating conditions and location of the facility and there is no method of designing hydrothermal heat pump systems, methods of preliminary hydrogeological studies of the area planned for installation of these systems. It is determined that further experimental studies of the influence of flow rate and dynamic level of the well on the stability and efficiency of the hydrothermal heat pump system are promising. Ref. 16, tab. 1, fig. 5.

Author Biography

О. Zurian , Institute of Renewable Energy of the National Academy of Sciences of Ukraine 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

img13.pngAuthor information:  Researcher of the Department of Geothermal Energy of the Institute of Renewable Energy of the National Academy of Sciences of Ukraine. Candidate of Technical Sciences.
Education: : Stavropol Higher Military Engineering Academy of Communication. Specialty: engineer of radiocommunication. He defended his dissertation: "Environmentally safe renewable heat sources" in 2016 at V.N. Karazina Kharkiv National University
Research area: renewable energy, unconventional hydrocarbon deposits, environmental safety.
Publications: more than 70 scientific publications, including 3 monographs and 20 author’s patents for inventions and utility models.


1. Barylo A.A. Analiz gidrogeologichnyh i geotermichnyh xarakterystyk geotermalnyh obyektiv Ukrayiny. [Analysis of hydrogeological and geothermal characteristics of geothermal objects of Ukraine]. Vidnovluvana energetika. 2020. No. 1(60). Pp. 74-84. https://doi.org/10.36296/1819-8058.2020.1(60).74-85 [in Ukrainian].
2. Boguslavskij E.I. Osvoenie teplovoj energii nedr. Sankt-Peterburg. [Development of thermal energy of the subsoil]. Naukoemkie tekhnologii. 2020. 435 p. [in Russian].
3. Didenko D.Yu., Cherkez E.A. Temperaturnyj rezhim vodonosnogo gorizonta v ponticheskih izvestnyakah po dannym monitoringa v katakombah odessy. [The temperature regime of the aquifer in pontic limestones according to monitoring data in the catacombs of Odessa]. Podzemnye sooruzheniya Odessy i Odesskoj oblasti: Sbornik materialov II-j nauchno-prakticheskoj konferencii. Odessa. 2019. Pp. 127-134. [in Russian].
4. Dolinskij A. A. Draganov B.H. Teplovye nasosy v sisteme teplosnabzheniya zdanij. [Heat pumps in the heating system of buildings]. Promyshlennaya teplotekhnika. 2008. t. 30. No. 6. Pp. 71-83. [in Russian].
5. Zurian O.V. Olijnichenko V.G. Gidrotermalna systema otrymannya teplovoyi energiyi, fizychni procesy, efektyvnist. [Hydrothermal system of thermal energy production, physical processes, efficiency]. Visnyk Vinnyckogo politexnichnogo instytutu. 2021. No. 4. Pp. 41-47.
https://doi.org/10.31649/1997-9266-2021-157-4-41-47 [in Ukrainian].
6. Kornyeyenko S.V. Metodyka gidrogeologichnyh doslidzhen. [Methods of hydrogeological research]. Pidruchnyk. KNU im Tarasa Shevchenko Kyiv. 2015. 275 p. [in Ukrainian].
7. Kudrya S.O. Vidnovlyuvani dzherela energiyi. [Renewable energy sources]. IVE NAN Ukrayiny. Kyiv. 2020. 354 p. [in Ukrainian].
8. Malkin E.S., Kulinko Ye.O. Perspektyvy ta aspekty zastosuvannya system teploxolodopostachannya, yaki vykorystovuyut prypoverxnevi shary vody v yakosti teplovogo akumulyatora. [Prospects and aspects of application of heat and cold supply systems that use the surface layers of water as a heat accumulator]. Ventylyaciya, osvitlennya ta teplogazopostachannya. 2014. No. 17. Pp. 63-69. [in Ukrainian].
9. Morozov Yu.P., Barylo A.A., Chalayev D.M., Dobrovolskyj M.P. Energetychna efektyvnist vykorystannya pershyh vid poverxni vodonosnyh goryzontiv dlya teplo- i xladopostachannya. [Energy efficiency of using the first aquifers from the surface for heat and cold supply]. Vidnovluvana energetika. 2019. No. 2. Pp. 70-78.
DOI: https://doi.org/10.36296/1819-8058.2019.2(57).70-78 [in Ukrainian].
10. Morozov Yu.P., Chalayev D.M., Olijnichenko V.G., Velychko V.V. Eksperymentalne doslidzhennya dobovogo akumulyuvannya xolodu shlyaxom vykorystannya vody pidzemnyh goryzontiv m. Kyeva. [Experimental study of daily accumulation of cold by using water of underground horizons of Kyiv]. Vidnovluvana energetika. 2019. No. 3. Pp. 67–77. DOI: https://doi.org/10.36296/1819-8058.2019.3(58).67-77 [in Ukrainian].
11. Olejnychenko V.G., Marchenko N.V., Kushnir I.O. Efektyvni napryamky investuvannya v galuzi geotermalnoyi energetyky. [Effective areas of investment in the field of geothermal energy]. Vidnovluvana energetika. 2017. No. 3. Pp. 73–79. [in Ukrainian].
12. Fedyanin V.Y., Miheev D.D. The method of calculating the heat flow in the soil heat exchanger, Gorizontyi obrazovaniya. Materialyi 61-y Nauchno-tehnicheskoy konferentsii studentov, aspirantov i professorsko-prepodavatelskogo sostava. Russia. 2005. Vol. 11. Pp. 12–15. [in English].
13. Goshovskiy S.V., Zurian O.V. Human-induced load on the environment when using geothermal heat pump wells. Journal of Geology. Geography and Geoecology. 2020. No. 1. Pp. 57–68. https://doi.org/10.15421/112006 [in English].
14. Lund J., Sanner B., Rybach L., Curtis R., Hellstrоm G. Geothermal (ground-source) heat pumps a world overview. GHC bulletin. 2004. Vol. 9. Pp. 1–10. [in English].
15. Zhu Ke, Blum Philipp, Ferguson Grant, Balke Klaus-Dieter, Bayer Peter. The geothermal potential of urban heat islands. 2010. Environ. Res. Lett. No. 5. Pp. 1–6. http://dx.doi.org/10.1088/1748-9326/6/1/019501 [in English].
16. Zurian O.V. Comparison of efficiency of geothermal and hydrothermal energy systems. XIX International Multidisciplinary Scientific GeoConference SGEM. Renewable Energy Sources and Clean Tech. Varna. Bulgaria. 2019. Pp. 83-90. https://doi.org/10.5593/sgem2019/4.1/S17.011 [in English].

Abstract views: 140
PDF Downloads: 70
How to Cite
Zurian О. (2021). EXPERIMENTAL STUDIES OF THE THERMAL REGIME OF THE HYDROTHERMAL HEAT PUMP SYSTEM. Renewable and Hydrogen Energy , (4(67), 77-89. https://doi.org/10.36296/1819-8058.2021.4(67).77-89