Keywords: heat pump, heat pump system, heat supply, fan coil, conversion factor


The issue of using heat pumps for the needs of autonomous heat supply of private houses, office premises and production premises is considered. The analysis of efficiency of work of the compression heat pump with fan coil for heat supply of buildings is given. The current model of the experimental heat pump system developed and constructed in IVE of NASU is presented. The method of conducting research is described. The characteristics of the measuring equipment installed on the experimental setup, which was used to obtain data in the process of research, are given. The results of scientific work obtained in the course of theoretical calculations and experimental studies of the efficiency of the heat pump system are presented. The conversion factor of the air-to-water heat pump in the heating system of a residential building with an area of ​​up to 100 m is calculated. The dependences of the heat pump transformation coefficient on the type of renewable source of low-potential heat energy are given. The dependences of the efficiency of the heat pump system on the parameters of the primary source of low-potential heat and design features of the heat supply system are substantiated. It has been experimentally confirmed and theoretically substantiated that the fan coil is an effective space heating device when working in conjunction with a heat pump. It is substantiated that further studies of heat pump systems implementation are promising, where low-potential energy of natural surface layers of the Earth and water of open reservoirs and aquifers and improvement of heat extraction systems from low-potential renewable energy sources are used as primary sources.


Ananyev V. A. Ventilation and air conditioning systems. Teoriya ta praktyka. Yevroklimat. 2001. 416 с.

Bezrodnyj M. K. Prytula N. O. Termodynamichna ta energetychna efektyvnist teplonasosnyx sxem teplopostachannya. [Thermodynamic and energy efficiency of heat pump schemes of heat supply]: Pidruchnyk. Kyiv: NTUU «KPI». 2016. 272 с.

Bezrodnyj M. K. Puxovyj I. I., Kutra D. S. Teplovi nasosy ta yix vykorystannya [Heat pumps and their use]: navch. posib. K. NTUU «KPI». 2013. 312 с.

Doly`nskyj A. A., Draganov B. X. Heat pumps in the heating system of buildings. Promіshlennaya teplotexnyka. 2008. т. 30. № 6. С. 71–83.

Zurian O. V., Olijnichenko V. G. Hydrothermal system for extracting thermal energy, physical processes, efficiency. Visnyk Vinnyczkogo politexnichnogo instytutu. 2021. № 4. С. 40–46.

Zurian. O. V. Experimental investigation of the thermal regime of a hydrothermal heat pump system. Vidnovlyuvana energetyka. 2021. 4(67). 77-89.

Kudrya S. O. Vidnovlyuvani dzherela energiyi.[ Renewal Energy]/Kyiv: IVE NAN Ukrayiny. 2020. 354 с.

Malkin E. S., Kulinko Ye .O. Perspektyvy ta aspekty zastosuvannya system teploxolodopostachannya, yaki vykorystovuyut prypoverxnevi shary vody v yakosti teplovogo akumulyatora. [Prospects and aspects of application of heat and cold supply systems that use near-surface layers of water as a heat accumulator]. Ventylyaciya, osvitlennya ta teplogazopostachannya. 2014. №17. С. 63–69.

Macevytij Yu. M., Chyrkyn N. B., Bogdanovych L. S., Klepanda A. S. O racyonalnom ispolzovanyi teplonasosnыx texnologyj v ekonomyke Ukrayny.[On the rational use of heat pump technologies in the economy of Ukraine]. Energosberezhenye. Energetyka. Energoaudyt. – 2007. №3. C. 20–31.

Misyura T. O. Pidvyshhennya efektyvnosti system teplopostachannya na bazi povitryanyx teplovyx nasosiv ta dodatkovy`x dzherel energiyi. [Improving the efficiency of heat supply systems based on air heat pumps and additional energy sources]. Magisters`ka dysertaciya zi specialnosti 144 «Teploenergetyka». Naukovyj kerivnyk prof., d. t. n. Bezrodnyj M. K.: NTUU KPI im. Sikorskogo. m. Kyiv. 2019. 114с.

Morozov Yu. P. et al. Energetychna efektyvnist vykorystannya pershyx vid poverxni vodonosnyx goryzontiv dlya teplo- i xladopostachannya. [Energy efficiency of using the first aquifers from the surface for heat and cold supply]. Yu. P. Morozov, A. A. Barylo, D. M. Chalayev, M. P. Dobrovolskyj. Vidnovlyuvana energetyka. 2019. № 2. С. 70-78. 10.36296/1819-8058.2019.2(57).70-78

Morozov Yu. P., Chalayev D. M., Nikolayevska N. V., Dobrovolskyj M. P. Ocinka efektyvnosti vykorystannya teplovogo potencialu dovkillya ta verxnix shariv Zemli Ukrayiny. [Estimation of efficiency of use of thermal potential of environment and the top layers of the Earth of Ukraine]. Vidnovlyuvana energetyka. 2019. №4(63). С. 80–88.

Serdyuk V. R. Oshovska A. V. Perspektyvyvi provadzhennya systemy` «chyller – fankojl». [Prospects for the implementation of the system "chiller - fancoil"]. mat. Mizhn konf. Energoefektyvnist v galuzyax ekonomiky Ukrayiny. 2017. VNTU.

Titko R., Kalinichenko A.V., Kalinichenko V. M. Efektyvnist vykorystannya teplovogo nasosu typu «povitrya – voda» u systemax teplopostachannya. [Efficiency of air-to-water heat pump use in heat supply systems]. Visnyk Poltavskoyi derzhavnoyi agrarnoyi akademiyi. Texnichni nauky. 2011. № 1. С. 158–162.

Denisov O. I. Comparative energy analysis of heat pumps and traditional heating systems. Tehnicheskaya teplofizika i promyishlennaya teploenergetika. Ukraine. 2010. vol. 2, pp 22–34.

Goshovskyi S., Zurian O. Еnvironmentally safe usage of hydropower potential by hydrothermal power supply systems. Visnyk of Taras Shevchenko National University of Kyiv: Geology. (2019). v. 4(87). pp. 67–75

Lund J., Sanner B., Rybach L. Curtis R., Hellstrоm G. Geothermal (ground-source) heat pumps a world overview. GHC bulletin. 2004. vol. 9. pp. 1–10.

Zhu Ke, Blum Philipp, Ferguson Grant, Balke Klaus-Dieter, Bayer Peter. The geothermal potential of urban heat islands. 2010. Environ. Res. Lett. №. 5. pp. 1–6.

Zurian O. V. Comparison of efficiency of geothermal and hydrothermal energy systems. XIX International Multidisciplinary Scientific GeoConference SGEM. Renewable Energy Sources and Clean Tech. Varna. Bulgaria. 2019. С. 83–90.

Abstract views: 81
PDF Downloads: 21
How to Cite
ZurianО., & Oliinichenko, V. (2022). SYSTEM: COMPRESSION HEAT PUMP-FANCOIL, FEATURES OF CONSTRUCTION, EFFICIENCY. Vidnovliuvana Energetyka, (2(69), 849.