Development of software for PV plant optimization. II. Dependence of sizing parameters on the tilt angle of PV modules

Keywords: stand-alone PV plants, sizing procedure, power supply reliability, installation PV plant capacity, power energy production, battery capacity, solar panel tilt angle, solar radiation, irradiance, anisotropic radiation models

Abstract

Under designing of a stand-alone photovoltaic system
(PVS), the problem of determining the size of main system components,
primarily the area of PV modules and the total battery
capacity is solved usually. It is known many approaches for
such calculations which based on various optimization criteria,
for example, a maximum power generation, a given level of
electricity supply reliability, a minimum initial and operating
costs etc. In this work, the objective function is the energy harvest
for a certain operation period in the year. In developed calculation
the scheme we use the daily energy balance equations with
taking into account the reliability factor of a power supply, and
carry out the joint optimization of the component PVS composition
and the inclination angle of PV modules. This scheme describes
the situations when in summer months the energy production
is excessive and in winter months is weak. The using of
proposed algorithm reduces the required PV module's area and
the respective installed power of PVS compared with conventional
optimization approaches for given load levels and power
supply reliability. The gain in the module's area can reach 14%
with the usual values of the battery capacity. As initial data for
our optimization calculation, the parameters of the PVS equipment
and the average hourly irradiance components are used.
Since the experimental irradiance data refer to the horizontal
plane usually, their transposition on the inclined surface is performed
by one of the known anisotropic diffuse radiation models
(Hay-Davies model in this work). The developed algorithm and
program for optimization of PVS parameters are applicable for
any operation period and for any region for which sufficiently
accurate experimental radiation data are available.

References

1. Practical Handbook of Photovoltaics. 2nd Edition.
Fundamentals and Applications /Editors: McEvoy A., Markvart
T., Castaner L.–London: Elsevier, 2012. – 1268 p.
2. Kalogirou S. A. Solar Energy Engineering: Processes
and Systems.–London: AcademicPress, 2009. – 760 p.
3. Kudrya S.O. Alternative and renewable energy
sources–Kyiv: NTUU "KPI", 2012. – 495 p.
4. Barra L., Catalanotti S., Fontana F. and Lavorante
F.Ananalytical method to determine the optimal size of a photovoltaic
plant // Solar Energy.– 1984. – Vol.33. – No 6. –p. 509–514.
5. Bataineh K., Dalalah D. Optimal configuration for design
of stand-alone PV system // Smart Grid and Renewable
Energy. – 2012. – Vol. 3. – p.139–147.
6. Kazema H.A., Khatiba T., Sopian K. Sizing of a standalone
photovoltaic/battery system at minimum cost for remote
housing electrification in Sohar, Oman //Energy and Buildings. –
2013. – Vol. 61. – p.108–115.
7. Soras C., Makios V._A novel method for determining
the optimum size of stand-alone photovoltaic systems // Solar
Cells. – 1988. – Vol.25. – p. 127 – 142.
8. Sidrach-de-Cardona M., Lopez L.M. A simple model
for sizing stand alone photovoltaic systems// Solar Energy Materials
and Solar Cells. – 1998. – Vol.55. – p. 199–214.
9. Khatib T., Ibrahim I.A., Mohamed A. A review on sizing
methodologies of photovoltaic array and storage battery in a
standalone photovoltaic system // Energy Conversion and
Management. – 2016. – Vol.120. – p. 430–448.
10. GaevskiyA.Yu., Ushkalenko O.V. Optimization calculation
of autonomous photovoltaic plant // International Scientific
Journal for Alternative Energy and Ecology (ISJAEE). – 2015.–
No.15 – 16 – p. 179–180.
11. Mustacchi C., Cena V., Rocchi M. Stochastic simulation
of hourly global radiation sequences // Solar Energy.–
1979.– Vol. 23.– No 1. –p. 47–51.
12. Balouktsis A., Karapantsios T. D., Antoniadis A. et al.
Sizing stand-alone photovoltaic systems // Int. Journ. Photoenergy.
– 2006. – Article ID 73650. –p.1–8.
13. Bright J.M., Smith C.J., Taylor P.G., Crook R. Stochastic
generation of synthetic minutely irradiance time series
derived from mean hourly weather observation data //Solar Energy.
– 2015. – Vol. 115. – p. 229–242.
14. Muselli M, Poggi P, Notton G, Louche A. First order
Markov chain model for generating synthetic “typical days”
series of global irradiation in order to design photovoltaic stand
alone systems // Energy Conversion and Management. – 2001. –
Vol.42. – No 6. –p.675–687.
15. Bouabdallah A., Olivier J.C., Bourguet S. et al. Safe
sizing methodology applied to a standalone photovoltaic system//
Renewable Energy. – 2015. –Vol.80. – p.266–274.
16. Siegel M.D., Klein S.A. and Beckman W.A.A simplified
method fo restimating the monthly-average of photovoltaic system
//SolarEnergy. – 1981. –Vol. 26. – No 5. –p. 413 – 418.
17. Evans D.L. Simplified method for predicting
photovoltaic array output //SolarEnergy. – 1981. –Vol. 27.–No 6.
–p. 555 – 560.
18. Clark D.R, Klein S.A. and Beckman W.A. A method for
estimatin gthe performance PV systems //SolarEnergy. – 1984. –
Vol. 33. – No 6. –p. 551–555.
19. Klein S.A.,Beckman W.A. Loss-of-load probabilities
for stand-alone photovoltaic systems //Solar Energy. – 1987. –
Vol.36. – No 6. – p.499 – 512.
20. BucciarelliL.L.Jr. Estimating loss-of-load probabilities
of stand-alone photovoltaic solar energy system // Solar Energy.
– 1984. – Vol. 32. – No 2. – p. 205 – 209.
21. Bartoli B., Cuomo V., Fontana F. et al. The design of
photovoltaic plants: an optimization procedure // Applied Energy.–
1984.– Vol. 18.– No 1. – p. 37–47.
22. Egido M., Lorenzo E. The Sizing of a Stand-Alone PV
Systems: A review and a proposed new method // Solar Energy
Materials and Solar Cells. – 1992.– Vol. 26 .– No 1–2. – p. 51–69.
23. Posadillo R., Luque R. Approaches for developing a
sizing method for stand-alone PV systems with variable demand
// Renewable Energy.– 2008.– Vol. 33.– No 5.– p. 1037–1048.
24. Markvart T., Fragaki A., Ross J.N. PV system sizing
using observed time series of solar radiation //Solar Energy.
2006. – Vol. 80.– p. 46–50.
25. Prasad A.R., Natarajan E. Optimization of integrated
photovoltaic-wind power generation systems with battery storage
// Energy. – 2006. – Vol.31. –p.1943–1954.
26. Hontoria L., Aguilera J., Zufiria P. A new approach
for sizing stand-alone photovoltaic systems based in neural networks
// Solar Energy. – 2005. – Vol.78. – p.313 – 319.
27. Khatib T., Elmenreich W. An improved method for sizing
standalone photovoltaic systems using generalized regression neural
network // Int. Journ. Photoenergy.– 2014.– Vol. 2014.– p. 1–8.
28. Shrestha G.B. ,Goel L. A study on optimal sizing of
stand-alone photovoltaic stations // IEEE Transactions on Energy
Conversion.– 1998.– Vol. 13.– No 4.– p. 373 – 378.
29. Muselli M., Poggi P., Notton G. and Louche A. Improved
procedure for stand-alone photovoltaic systems sizing
using METEOSAT satellite images // Solar Energy.– 1998.–
Vol. 62.– No 6.– p. 429 – 444.
30. Battke B., Schmidt T.S., Grosspietsch D., Hoffmann
V.H. A review and probabilistic model of lifecycle costs of stationary
batteries in multiple applications // Renewable and Sustainable
Energy Reviews. – 2013. –Vol.25.–p.240–250.
31. Klise G.T., Stein J.S. Models used to assess the performance
of photovoltaic systems. SANDIA Report 2009–8258.
– Albuquerque, New Mexico: Sandia National Laboratories. –
2009. – 61 p.
32. Al Riza D.F., Gilani S.I.H. Standalone Photovoltaic
System Sizing using Peak Sun Hour Method and Evaluation by
TRNSYS Simulation //International Journal of Renewable Energy
Research. – 2014. –Vol.4. –No1. – p.109–114.
33. Suresh P., Thomas J. Performance analysis of standalone
pv systems under non-uniform operating conditions using
PVSYST // Advanced Research in Electrical and Electronic
Engineering. –2014. – Vol.1. – No 4. –p. 19–25.
34. GaevskayaA.N., GaevskiiA.Y.Development of software
for PV plant parameters optimization.I. The tilt and azimuth angles
of solar panels//VidnovlyuvanaEnergetica. – 2017 (in publish).
35. Lewis G. Optimum tilt of solar collectors // Solar and
Wind Technology. – 1978. – Vol.4. – p.407–410.
36. Calabr? E. An Algorithm to Determine the Optimum Tilt
Angle of a Solar Panel from Global Horizontal Solar Radiation / E.
Calabr? // Hindawi Publishing Corporation, Journal of Renewable
Energy. – 2013. –Vol. 2013. – Article ID 307547. – 12 p.
37. Handbook on climate of USSR. Ukrainian SSR. Part I.
Solar radiation, radiation balance and sunshine / Editors: V.I
Grishko, L.I. Misyury – Leningrad: HydrometeorologicalPubl. -
1966. – 126 p.
38. Ali Noorian M., Moradi I., Ali Kamali G. Evaluation of
12 models to estimate hourly diffuse irradiation on inclined surfaces
/ //Renewable Energy. – 2008. – Vol.33. – p. 1406–1412.

Abstract views: 53
PDF Downloads: 84
Published
2017-09-11
How to Cite
Gaevskaya, A., & Gaevskii, A. (2017). Development of software for PV plant optimization. II. Dependence of sizing parameters on the tilt angle of PV modules. Vidnovluvana Energetika, (3 (50), 22-34. Retrieved from https://ve.org.ua/index.php/journal/article/view/35