Keywords: compost, substrate, organic raw material, fermentation chamber, heat balance of organic matter.


A design of a fermentation chamber for compost production is presented. A heat mode of the chamber operation on a substrate, which is the mixture of a straw, cattle manure, bird`s manure and a wood sawdust, is investigated. Substrate`s moisture content was 62%. Experiments were held open air. Surrounding temperature was 10 °С to -10 °С. To reduce heat loses, the fermentation chamber was thermally insulated. An air for the substrate aeration have been heated from +20 to +60 °С. A balance heat is introduced. The mathematical model is developed from the heat balance equation. By the multifactor experiment a dependence between the balance heat and the substrate aeration air temperature, the thermal insulation thickness and the surrounding temperature was found. The conditions at which , from the energy point, an autonomous fermentation process takes place are: aeration air temperature – 18…24 °С; surrounding air temperature – 1…5 °С; insulation thickness – 100 mm. Experimental results have high correspondence with the analytical data. The determination coefficient is 0.99. Presented results could be used for further researches of the heat operation mode of the fermentation chamber (volume 250 L) for compost production from the organic raw material. The received results make possible to determine optimal insulation thickness, which corresponds with surrounding temperature conditions, that help reducing heat losses and raising fermentation installation effectivity in general. Further researches are planned in the direction of determination of the influence of the chamber rotation velocity and aeration air volume on the compost quality. Bibl. 21, tabl. 2, fig. 5.


1. Steudler S., Werner A., Cheng J.J. Solid State Fermenta-tion. Research and Industrial Applications. Switzerland: Springer Nature, 2019. 172 p. [in English].
2. Chen H. Modern Solid State Fermentation. Theory and Practice. Switzerland: Springer Nature, 2013. 324 p. [in English].
3. Raghavarao K. S. M., Ranganathan T., Karanth N. Some engineering aspects of solid-state fermentation. Bio-chemical Engineering Journal, vol. 13 (2-3), 2003. P. 127 –135.
https://doi:10.1016/s1369-703x(02)00125-0 [in Eng-lish].
4. Wang Y., Pang L., Liu X., Wang Y., Zhou K., Luo F. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresource Technology, vol. 206, 2016. P. 164–172. [in English].
5. Kalamdhad A. S. & Kazmi A. A. Effects of turning fre-quency on compost stability and some chemical charac-teristics in a rotary drum composter. Chemosphere, vol. 74 (10), 2009. P. 1327–1334.
https://doi:10.1016/j.chemosphere.2008.11 [in Eng-lish].
6. Jain M. S., Paul S. Kalamdhad A. S. Kinetics and physics during composting of various organic wastes: Statistical approach to interpret compost application feasibility. Journal of Cleaner Production, vol. 255, 2020. 120324.
https://doi:10.1016/j.jclepro.2020.120324 [in English].
7. Reyes-Torres M., Oviedo-Ocaña E. R., Dominguez I., Komilis D., Sánchez A. A systematic review on the com-posting of green waste: Feedstock quality and optimiza-tion strategies. Waste Management, vol. 77, 2018. P. 486–499.
https://doi:10.1016/j.wasman.2018.04.037 [in English].
8. Avidov R., Sudharsan Varma V., Saadi I., Hanan A., Yoselevich I., Lublin A., Laor, Y. Physical and chemical indicators of transformations of poultry carcass parts and broiler litter during short term thermophilic com-posting. Waste Management, vol. 119, 2020. P. 202–214.
https://doi:10.1016/j.wasman.2020.09.040 [in English].
9. Wang Y., Huang G., Zhang A., Han L., Ge J. Estimating thermal balance during composting of swine manure and wheat straw: A simulation method. International Journal of Heat and Mass Transfer, vol. 75, 2014. P. 362–367.
https://doi:10.1016/j.ijheatmasstransfer. [in English].
10. Bach P. D., Nakasaki K., Shoda M. Kubota H. Thermal balance in composting operations. Journal of Fermenta-tion Technology, vol. 65 (2), 1987. P. 199–209. https://doi:10.1016/0385-6380(87)90165-8 [in Eng-lish].
11. Lau A. K., Lo K. V., Liao P. H., Yu J. C. Aeration experi-ments for swine waste composting. Bioresource Tech-nology, vol. 41 (2), 1992. P. 145–152.
https://doi:10.1016/0960-8524(92)90185-z [in Eng-lish].
12. Lekanda J. S., Pérez-Correa J. R. Energy and water bal-ances using kinetic modeling in a pilot-scale SSF biore-actor. Process Biochemistry, vol. 39 (11), 2004. P. 1793–1802.
https://doi:10.1016/j.procbio.2003.09.001 [in English].
13. Banat I. M., Carboué Q., Saucedo-Castañeda G., de Jesús Cázares-Marinero J. Biosurfactants: The Green Genera-tion of Speciality Chemicals and Potential Production Using Solid-State Fermentation (SSF) Technology. Biore-source Technology, 2020. 124222.
https://doi:10.1016/j.biortech.2020.12422 [in English].
14. Thomas L., Larroche C., Pandey A. (2013). Current de-velopments in solid-state fermentation. Biochemical Engineering Journal, vol. 81, 2013. P. 146–161.
https://doi:10.1016/j.bej.2013.10.013 [in English].
15. Kapoor M., Panwar D., Kaira G. S. Bioprocesses for Enzyme Production Using Agro-Industrial Wastes. Agro-Industrial Wastes as Feedstock for Enzyme Production, 2016. P. 61–93.
https://doi:10.1016/b978-0-12-802392-1.00003-4 [in English].
16. Bellon-Maurel V., Orliac O. Christen P. Sensors and measurements in solid state fermentation: a review. Process Biochemistry, vol. 38 (6), 2003. P. 881–896. https://doi:10.1016/s0032-9592(02)00093-6 [in Eng-lish].
17. Doriya K., Kumar D. S. Solid state fermentation of mixed substrate for l-asparaginase production using tray and in-house designed rotary bioreactor. Biochemical Engi-neering Journal, vol. 138, 2018. P. 188–196.
https://doi:10.1016/j.bej.2018.07.024 [in English].
18. Golub G., Tregub M., Holubenko A., Tsyvenkova N., Chuba V., Tereshchuk M. Determining of the influence of reactor parameters on the uniformity of mixing sub-strate components. Eastern-European Journal of Enter-prise Technologies. Vol. 6(7-108), 2020. P. 60–70. [in English].
19. Bulyandra O. F. Technical thermodynamics: a textbook for energy students. Special higher education institu-tions, 2nd ed., ex. K.: Technika, 2006. 320 p. [in Ukrain-ian].
20. Kukharets S., Tsyvenkova N., Yarosh Ya., Grabar I., Holu-benko A. The results of study into the effect of airsteam blast on the lowgrade fuel gasification process. Eastern-European Journal of Enterprise Technologies, № 6/8 (96), 2018. P. 86–96.
https://doi: 10.15587/1729-4061.2018.147545 [in English].
21. Lapach S. M. Theory of experiment planning: Perfor-mance of calculation and graphic work: teaching. Man-ual for students specialty 131 "Applied Mechanics", specialization "Mechanical Engineering Technology". Kyiv: KPI named after Igor Sikorskyi, 2020. 86 p. [in Ukrainian].

Abstract views: 19
PDF Downloads: 17
How to Cite
Tereshchuk, M., Mykhailovych, Y., Chetveryk, H., Tsyvenkova, N., Holubenko А., & Omarov, I. (2023). INVESTIGATION OF FERMENTATION CHAMBER THERMAL CONDITION PARAMETERS. Vidnovluvana Energetika , (4(71), 71-82.