Regarding the influence of magnetic fields on microorganisms involved in biometanohenez

Keywords: biodas, biometanogenesis, magnetic field, bacteries, microorganisms

Abstract

The article analyzes the current state of research on the influence of magnetic fields of different configurations on microorganisms. Overview information received by domestic
and foreign scientists in experiments on groups of bacteria and yeast that are involved in biomethanogenesis. The possibility of stimulating microorganisms involved in biomethanogenesis and, consequently, increase the yield of biogas by exposure to magnetic fields substrate. The existence of biological effects depending on the settings specified exposure: intensity,
frequency, modulation type and duration. The analysis revealed unsystematic and selectivity of previous studies and the need to further refine the intensification of biomethanogenesis every step, optimal in terms of efficiency.

Author Biographies

Y. Kachan, Zaporizhzhia State Engineering Academy

The head of the department "Electrical Engineering and Energy Efficiency", PhD, professor.

V. Kovalenko, Zaporizhzhia State Engineering Academy

The dean of the FEEIT, docent of the department "Electrical Engineering and Energy Efficiency", PhD, docent.

O. Lapikova, Zaporizhzhia State Engineering Academy

the Assistant of department Electrical Engineering and Energy Efficiency

References

1. Kachan YG, Kovalenko VL, Lapikova AI Analysis of the effectiveness and prospects of biogas energy. Proceedings of the International Conference "Renewable Energy 21". Kyiv National University, Kyiv, 2015, 353-355.
2. Эder B., H. Schultz "Byohazovye installation. Practical posobye pod nauchnoy the editors Reddyha IA », Zorg Biogas, 2011.
3. Pilla, A.A.; Markov, M.S. Bioeffects of weak electromagnetic fields. Rev. Environ. Health 1994, 10, 155–169.
4. Hunt R.W., Zavalin A., Bhatnagar A, Chinnasamy S. and Das K. Electromagnetic "Biostimulation of Living Cultures for Biotechnology, Biofuel and Bioenergy. Applications" International Journal of Molecular Sciences, Int. J. Mol. Sci. 2009, 10.
5. Erygin, G.D.; Pchedlkina, V.V.; Kulikova, A.K.; Rurinova, N.G.; Bezborodov, A.M.; Gogolev, M.N. Influence on microorganism growth and development of nutrient medium treatment with magnetic field. Prikl. Biokhim. Mikrobiol. 1988, 24, 257–263.
6. Moore, R.L. Biological effects of magnetic fields: Studies with microorganisms. Can. J. Microbiol. 1979, 25, 1145–1151.
7. Hönes, I.; Pospischil, A.; Berg, H. Electrostimulation of proliferation of the denitrifying bacterium Pseudomonas stutzeri. Bioelectrochem. Bioenerg. 1998, 44, 275–277.
8. Justo, O.R.; Pérez, V.H.; Alvarez, D.C.; Alegre, R.M. Growth of Escherichia coli under extremely low-frequency electromagnetic fields. Appl. Biochem. Biotechnol. 2006, 134, 155–163.
9. Hirano, M.; Ohta, A.; Abe, K. Magnetic field effects on photosynthesis and growth of the cyanobacterium spirulina platensis. J. Ferment. Bioeng. 1998, 86, 313–316.
10. Li, Z.-Y.; Guo, S.-Y.; Lin, L.; Cai, M.-Y. Effects of electromagnetic field on the batch cultivation and nutritional compostion of Spirulina platensis in an air-lift photobioreactor. Bioresour. Technol. 2007, 98, 700–705.
11. Takahaski, F.; Kamezaki, T. Effect of magnetism of growth of Chlorella. Hakkokogaku 1985, 63, 71–74.
12. Yamaoka, Y.; Takimura, O.; Fuse, H.; Kamimura, K. Effect of magnetism on growth of Dunaliella salina. Res. Photosynth. 1992, 3, 87–90.
13. Erygin, G.D.; Pchedlkina, V.V.; Kulikova, A.K.: Rurinova, N.G.; Bezborodov, A.M.; Gogolev, M.N. Influence on microorganism growth and development of nutrient medium treatment with magnetic field. Prikl. Biokhim. Mikrobiol. 1988, 24, 257–263.
14. Fiedler, U.; Grobner, U.; Berg, H. Electrostimulation of yeast proliferation. Bioelectrochem. Bioenerg. 1995, 38, 423–425.
15. Engstrom, S.; Markov, M.; McLean, M.; Holcomb, R.: Marko, J. Effects of non-uniform static magnetic fields on the rate of myosin phosphorylation. Bioelectromagnetics 2002, 23, 475–479.
16. Smith, S.; McLeod, B.R.; Liboff, A.R.; Cooksey, K. Calcium cyclotron resonance and diatom mobility.
Bioelectromagnetics 1987, 8, 215–227.
17. Blackman, C.; Benane, S.G.; House, D.E.; Elliott, D.J. Importance of alignment between local DC magnetic field and an oscillating magnetic field in response to brain tissue in vitro and in vivo. Bioelectromagnetics 1990, 11, 159–167.
18. Reese, J.; Frazier, M.E.; Morris, J.E.; Buschbom, R.L. Evaluation of changes in diatom mobility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics 1991, 12, 21–25.
19. Blackman, C.; Blanchard, J.P.; Benane, S.G.; House, D.E. Effect of AC and DC magnetic field orientation on nerve cells. Biochem. Biophys. Res. Commun. 1996, 220, 807–811.
20. Pilla, A.A.; Kaufman, J.J.; Ryaby, J.T. Electrochemical kinetics at the cell membrane: A physicochemical link for electromagnetic bioeffects. In Mechanistic Approaches to Interaction of Electric and Electromagnetic Fields with Living Systems; Blank, M, Findl, E., Ed.; 1987; pp. 39–61.
21. Lensky, V. Generation of multipolar electromagnetic energy. US Patent Application: 20,080,112,111, 2006.
22. Zavalin, A.; Collins, W.E.; Morgan, S. In A Compensation Zone of Multipolar System of EM Fields
Stimulates Bacterial Growth, Proceeds of the 24th Meeting of Bioelectromagnetics Society, Quebec, Canada, 2002; pp. 8–9.
23. Zavalin, A.; Lensky, V.; McCarrol, P.; Westbrook, R.: Collins, W.E.; Morgan, S. Biostimulation of microorganisms exposed to multipolar systems of mutually compensated EMF. Bioelectromagnetics 2009, in review.
24. Rein, G. Bioinformation within the biofield: Beyond bioelectromagnetics. J. Altern. Complem. Med. 2004, 10, 59–68.

Abstract views: 53
PDF Downloads: 95
Published
2017-03-16
How to Cite
Kachan, Y., Kovalenko, V., & Lapikova, O. (2017). Regarding the influence of magnetic fields on microorganisms involved in biometanohenez. Vidnovluvana Energetika , (1 (48), 87-92. Retrieved from https://ve.org.ua/index.php/journal/article/view/97