@article{Matyakh_Surzhyk_Rieztsov_2020, title={DETERMINATION OF THE EFFICIENCY OF SOLAR HOT WATER SYSTEMS IMPLEMENTATION}, url={https://ve.org.ua/index.php/journal/article/view/238}, DOI={10.36296/1819-8058.2020.1(60).17-22}, abstractNote={<p><em>The use of modern solar collectors ensures a high level of utilization of solar radiation energy and the stability of hot water supply throughout the year throughout Ukraine. At the present stage of development of solar thermal power engineering, the problems of efficient use of energy of solar radiation come to the first place due to the use of advanced technologies and establishment of optimal parameters of power equipment.</em></p> <p><em>The procedure for determining the efficiency of using solar hot water systems presented in the paper provides obtaining energy and economic parameters of solar thermal power equipment in a particular locality, determining the type and parameters of solar installations for their maximum effective use.</em></p> <p><em>The choice of type and performance of solar collectors for a particular area is primarily focused on the needs of a particular consumer and specific indicators of solar radiation in the area (monthly and annual average amount of direct, scattered and total solar radiation). Based on the presented data, the daily absorption intensity of the solar collector of solar radiation is determined, taking into account the operating parameters of the solar engineering installation and the optimal angle of inclination to the horizon. The estimated energy parameters are further used to establish cost-effectiveness, payback time and environmental performance by reducing carbon dioxide emissions. </em><em>Solar heat supply in Ukraine has sufficient experience in the use and development of a normative base for design, and the technological potential of the industry allows to write out the tasks of mass production of heliotechnical equipment. The proposed procedure for prompt establishment of the efficiency of the introduction of solar hot water systems for potential consumers will contribute to the widespread utilization of solar thermal energy throughout Ukraine and, consequently, to reducing the use of organic fuel and improving the state of the environment.</em> <em>Ref</em><em>. 7, </em><em>tabl</em><em>. 2.</em></p&gt;}, number={1(60)}, journal={Vidnovluvana energetika }, author={Matyakh, S. and Surzhyk, T. and Rieztsov, V.}, year={2020}, month={Mar.}, pages={17-22} }