MODELING DYNAMICS LOADING MODES WORK OF THE HYDRO-PUMP STATION WITH THE ELECTRIC DRIVE FROM POWER SUPPLY OF THE WIND ELECTRIC INSTALLATION WITH THE SYNCHRONOUS GENERATOR

Keywords: wind turbine, hydraulic pump, dynamics, inertia, flow, synchronous generator, stochasticity.

Abstract

Hydro-pumped hydropower stations have been used in areas remote from the distribution grids. The experience of operating such stations demonstrates a significant impact of wind speed ripples on their performance. In the framework of this study, a mathematical model of the dynamics of water flow change by a multi-unit hydro-pump station with electric drive from asynchronous motors with a short-circuited rotor winding with power from a wind electric installation with a synchronous generator with a stochastic component of wind speed change was developed. The study of dynamic processes is carried out at a 10-minute interval of averaging wind speed, which is a standardized value for estimating the power of a wind electric installation for disturbance of wind flow. The model is a system of nonlinear differential equations describing the interaction of two inertial components of a single aero-electro-hydro-dynamic system. The first inertial component includes a wind turbine and a synchronous generator, and the second - an induction motor and a hydraulic pump. The interaction of one inertial component with another is effected through the electrical connection between the generator and the motor through the transmission line together with the transformer substations. The parameters of mechanical rotational motion of inertial components were determined using the assumption of quasi-stationarity of electromagnetic processes in the stator and rotor circuits of the generator and the motor. The calculation of their electromagnetic moments was carried out using equivalent alternate electrical circuits of the equipment, taking into account the variable speed and an arbitrary number of hydro units in the station. The results of calculations of the dynamics of the supply of a 1 MW hydro-pump station of 5 hydropower units with a synchronous pole generator of the same power at a wind speed less than the nominal value equal to and greater than the nominal value are presented. They provide an opportunity to evaluate the dynamic properties of the process of converting wind kinetic energy into the potential energy of water stored in a pool battery. The results obtained today are becoming increasingly important in view of the need to integrate significant wind power capacity into electricity systems. Ref. 26, tab. 3, fig. 8.

Author Biographies

P. Vasko, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 02094, 20А Hnata Khotkevycha St., Kyiv, Ukraine.

vasko.jpgAuthor information:  Doctor of Technical  Sciences majoring in «Renewable Energy  Transformation», Head of Hydropower Department of the Institute of Renewable Energy NAS of Ukraine.
Education: National Technical University of Ukraine «Kyiv Polytechnic Institute».
Research area: alternative energy, energy saving, conversion of renewable energy types and installations based on them, small hydropower
Publications: 247.

S. Pazych, Institute of Renewable Energy, NAS of Ukraine 02094, st. Hnata Khotkevycha 20А , Kyiv, Ukraine

pazych1.jpgAuthor information: postgraduate, junior researcher of Hydropower Engineering Department, Institute of Renewable Energy NAS of Ukraine.
Education: National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». Specialty «Non-traditional and renewable energy sources».
Publications: 12

References

1. Haritonov V.P. Avtonomnyie vetroelektricheskie ustanovki. [Autonomous wind power plants]. Moscow. 2006. 280 p. [in Russian].
2. Vasko V.P., Vasko P.F. Dinamika nagruzochnyih rezhimov rabotyi vetroelektricheskoy ustanovki, obuslovlennaya poryivami vetra. [Dynamics of loading modes of the wind-electric installation, caused by gust of wind]. Bulletin of the Donbas State Academy of Civil Engineering and Architecture. Collection of scientific work. 2001. № 4(29). Pp. 140-144. [in Ukrainian].
3. Vasko P.F., Vasko V.P., Danylenko O.I., Doliuk V.V. Eksperymentalni doslidzhennia rezhymiv heneruvannia ta spozhyvannia reaktyvnoi potuzhnosti seriinoiu vitroelektrychnoiu ustanovkoiu z asynkhronnym heneratorom. [Experimental studies of the modes of generation and consumption of reactive power by a serial wind-driven installation with an asynchronous generator]. Vidnovluvana energetika. 2008. № 1(12). Pp. 34-38. [in Ukrainian].
4. Jastrzębska, G. El Hierro Renewable Energy Hybrid System: A Tough Compromise. Energies. 2018. № 11(10). 2812. 20 p. doi: 10.3390/en11102812. [in English].
5. Vasko P.F., Verboviy A.P., IbragImova M.R., Pazych S.T. GIdroakumulyuvalnI elektrostantsiyi – tehnologIchna osnova Integratsiyi potuzhnih vItro- ta fotoelektrichnih stantsIy do skladu elektroenergetichnoyi sistemi Ukrayini. [Pumped hydroelectric energy storage – technological basis of integration of powerful wind and photoelectric power stations into the power system of Ukraine]. Hydropower of Ukraine. 2017. № 1-2. Pp. 20-25. [in Ukrainian].
6. Ummels B.C., Pelgrum E., Kling W.L. Integration of large-scale wind power and the use of energy storage in the Neth-erlands. Renewable Power Generation. IET. 2008. № 2. Pp.34-46. [in English].
7. IEC 61400-1:2005 Wind Turbines – Part 1: Design re-quirements. International Standard. 2005. 179 p. [in English].
8. ІDSTU ІЕС 61400-12-2001. Systemy turboheneratorni vitryani. Chastyna 12. [Wind turbine generator systems. Part 12]. Wind turbine power performance testing. (ІЕС 61400-11:1998. IDT). Vved. 01.07.2003. K. Gospotrebstandart Ukrainy. 2003. 31 p. [in Ukrainian].
9. Voskoboynik V.E., Boroday V.A. Osnovyi elektroprivoda proizvodstvennyih mashin i kompleksov. [Fundamentals of elec-tric drive of production machines and complexes]. Dneprope-trovsk. State University «NSU». 2015. 121 p. [in Russian].
10. Denisenko G.I., Vasko P.F., Pekur P.P. Stohasticheskoe modelirovanie parametrov vetra dlya zadach vetroenergetiki. [Sto-chastic simulation of wind parameters for wind power projects]. Bulletin of the Academy of Sciences of the USSR Energy and Transport. 1990. № 2. Pp. 109-115. [in Russian].
11. Vasko P.F., Verbovyi A.P., Pazych S.T. Realizatsiia stokhastychnoi dvoparametrychnoi modeli pozdovzhnoi skladovoi shvydkosti vitru dlia zadach vitroenerhetyky. [Implementation of a stochastic two-parameter model of the longitudinal component of the wind speed for wind power problems]. Vidnovluvana energetika. 2017. № 3(50). Pp. 54-61. [in Ukrainian].
12. Krivtsov V.S., Oleynikov A.M., Yakovlev A.I. Neischerpaemaya energiya. Kn. 2. Vetroenergetika [Inexhaustible energy. B. 2. Wind power]. Textbook. 2004. 519 p. [in Russian].
13. Abramovskiy E.R., Gorodko S.V., Sviridov N.V. Aero-dinamika vetrodvigateley. [Aerodynamics of wind turbines]. Dnepropetrovsk. Publisher DGU. 1987. 220 p. [in Russian].
14. Pazych S.T. Aproksimatsіya ayeromekhanіchnikh kharakteristik vіtrovoї turbіni vіtrovodonasosnoї ustanovki v navantazhuvalnikh rezhimakh roboti metodom zamіni zmіnnikhs. [Approximation of aeromechanical characteristics of the wind turbine of a wind pump installation in the load operation modes by the method of changing the variables]. Vidnovluvana energetika. 2018. № 1(52). Pp.62-69. [in Ukrainian].
15. Pazych S.T. Modeliuvannia protsesu zariadu baseinu-akumuliatora hidroakumuliuvalnoi elektrostantsii vid vitrovodonasosnoi ustanovky. [Modeling of the charge process of the upper reservoir of the pump hydroelectric energy storage from the wind pump installation]. Vidnovluvana energetika. 2019. № 2(57). Pp. 61-69. doi: 10.36296/1819-8058.2019.2(57).61-69. [in Ukrainian].
16. Arshenevskyi N.N. Obratymыe hydromashynы dlia hy-droakkumulyruiushchykh эlektrostantsyi. [Reversible hydraulic machines for pumped hydroelectric energy storage]. Leningrad, Energia. 1977. 240 p. [in Russian].
17. Stepanoff A.I. Tsentrobezhnyie I osevyienasosyi. [Centrifugal and axial flow pumps]. Moscow. Mashgiz. 1960. 464 p. [in Russian].
18. Voldek A.I. Elektricheskie mashiny. [Electric machines]. 2 edition. L. Energy. 1974. 840 p. [in Russian].
19. Vazhnov A.I. Perehodnyie protsessyi v mashinah peremennogo toka. [Transients in alternating current machines]. Leningrad. Energia. 1980. 256 p. [in Russian].
20. Kravchik A.E., Shlaf M.M., Afonin V.I. Asinhronnyie dvigateli serii 4A. [Electric Machine Reference 4A]. Reference book. Moscow. Energoizdat. 1982. 504 p. [in Russian].
21. Kopyilov I.P., Klokova K.K. Spravochnik po elektriches-kim mashinam. V 2 t. / T. 1. [Electric Machine Reference. in 2 vol./Vol. 1]. Moscow. Energoatomizdat. 1988. 456 p. [in Russian].
22. Bryl А.O., Vasko V.P., Vasko P.F., Solovyov P.B. Ma-tematicheskoye modelirovaniye nestatsionarnykh elektromek-hanicheskikh protsessov gidroelektricheskikh agregatov malykh GES s razlichnymi tipami generatorov pri parallel'noy rabote s elektrosistemoy. [Mathematical modeling of non-stationary elec-tromechanical processes of hydroelectrical hardware for small hydro power stations with different types of generators at parallel functioning with electric system]. Alternative Energy and Ecology ISJAEE. 2013. № 3. Pp. 143-150.
23. Bessonov L.A. Teoreticheskie osnovyi elektrotehniki. Elektricheskie tsepi: Ucheb. dlya elektrotehn., energ., pripo-rostroit. spets. vuzov –9 izd., pererab. i dop. [Theoretical Founda-tions of Electrical Engineering. Electric circuits]. Moscow. High school. 1996. 638 p. [in Russian].
24. Mohanpurkar M., Ouroua A., Hovsapian R., Luo Y., Singh M., Muljadi E., Gevorgian V., Donalek P. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis. Electric Power Systems Research. 2018. Vol. 154. Pp. 276-286. doi: 10.1016/j.epsr. 2017.08.010. [in Eng-lish].
25. Vasko P.F. Razrakhunok pokaznykiv tekhnichnoyi efektyvnosti zastosuvannya vitroelektrychnykh ustanovok za rezul'tatamy strokovykh vymiryuvan' shvydkosti. [Calculation of the technical efficiency of the application of wind power installations based on the results of term velocity measurements].Technical electrodynamics. 2001. №6. Pp.45-49. [in Ukrainian].
26. Bryl A.A., Vasko P.F. Pekur P.P. Opredelenie tehnicheskih pokazateley effektivnosti ispolzovaniya vetroelektricheskih agregatov v Ukraine. [Definition of technical indicators of efficiency of use the wind-electric aggregates in Ukraine]. Energy and electrification. 1995. № 2. Pp. 48-51. [in Russian].

Abstract views: 237
PDF Downloads: 217
Published
2020-03-30
How to Cite
Vasko, P., & Pazych, S. (2020). MODELING DYNAMICS LOADING MODES WORK OF THE HYDRO-PUMP STATION WITH THE ELECTRIC DRIVE FROM POWER SUPPLY OF THE WIND ELECTRIC INSTALLATION WITH THE SYNCHRONOUS GENERATOR. Vidnovluvana Energetika , (1(60), 61-73. https://doi.org/10.36296/1819-8058.2020.1(60).61-73